Nvidia今天宣布推出了一项新的生成式AI微服务,旨在允许企业将自定义聊天机器人、copilot和AI摘要工具连接到实时专有的企业数据以提供更准确的结果。

这项名为NeMo Retriever的新服务是Nvidia NeMo云原生框架和工具系列中的一部分,用于构建、定制和部署生成式AI模型,旨在让企业组织能够把检索增强生成功能构建到他们的生成式AI应用中。
检索增强生成(RAG)是一种通过利用从外部来源检索的事实和数据填补大型语言模型“知识”空白以提高生成式AI模型准确性和安全性的方法。一个大型语言模型接受前期训练,为其提供大量一般任务知识和能力,例如理解对话提示、总结和提供问答能力。训练既昂贵又耗时,因此通常只进行一次或者很少进行训练,以为部署模型做准备。
然而,一旦部署,模型本身将缺乏实时信息和最新的特定领域专业知识,这可能会导致不准确和所谓的“幻觉”——也就是大型语言模型会自信但错误地回答问题。
使用NeMo Retriever,就可以把多种来源(包括数据库、HTML、PDF、图像、视频和其他方式)的最新数据输入大型语言模型,这意味着模型将拥有由企业客户自己专有来源提供的、更全面的事实集,这些事实可以在数据可用时进行更新。数据可以驻留在任何地方,包括云、数据中心或本地环境中,并且可以安全地访问这些数据。
Nvidia公司超大规模和高性能计算副总裁Ian Buck表示:“这是整个企业聊天机器人领域的圣杯,因为绝大多数有用数据都是专有数据,不是嵌入这些模型中的公开可用数据,而是公司内部可用的数据。因此,将AI和客户数据库相结合,可以使其更高效、更准确、更有用,并让客户能够优化模型的功能。”
通过添加专有数据可以减少不准确的答案,因为大型语言模型可以利用更好的上下文信息来产生结果,从而提高准确性。与研究论文如何提供信息来源的引用类似,Retriever的RAG功能会根据企业内部特定领域知识提供额外的专家信息来源,以便更好地为大型语言模型提供信息,使其能够根据问题提供更好的、更准确的答案。
Nvidia表示,与社区主导的开源RAG工具包不同,Retriever旨在支持商业型和生产就绪的生成式AI模型,这些模型已经可用并针对RAG功能、企业支持和托管安全补丁进行了优化。
目前,电子系统设计公司Cadence Design Systems、Dropbox、SAP和ServiceNow等企业客户已经在和Nvidia合作,利用新功能将RAG引入他们定制的生成式AI工具、应用和服务中。
Cadence公司总裁、首席执行官Anirudh Devgan表示,该公司的研究人员正在与Nvidia展开合作,利用Retriever通过提高准确性来帮助生产出更高质量的电子产品。Devgan表示:“生成式AI引入了创新方法来满足客户需求,例如在设计过程早期发现潜在缺陷的工具。
Buck表示,通过使用Retriever,客户可以用更少的时间训练生成式AI模型,以获得更准确的结果,这意味着企业客户可以采用更多现成的模型,简单地部署模型并使用他们自己的内部数据,而无需花费大量的时间、费用和精力来持续训练模型以使保持模型的最新状态。
NeMo Retriever将添加上述RAG功能,作为Nvidia AI Enterprise端到端云原生软件平台的一个组成部分,该平台主要用于简化AI应用的开发。从今天开始,开发者就可以注册抢先体验NeMo Retriever。
好文章,需要你的鼓励
33年后,贝尔纳多·金特罗决定寻找改变他人生的那个人——创造马拉加病毒的匿名程序员。这个相对无害的病毒激发了金特罗对网络安全的热情,促使他创立了VirusTotal公司,该公司于2012年被谷歌收购。这次收购将谷歌的欧洲网络安全中心带到了马拉加,使这座西班牙城市转变为科技中心。通过深入研究病毒代码和媒体寻人,金特罗最终发现病毒创造者是已故的安东尼奥·恩里克·阿斯托尔加。
悉尼大学和微软研究院联合团队开发出名为Spatia的创新视频生成系统,通过维护3D点云"空间记忆"解决了AI视频生成中的长期一致性难题。该系统采用动静分离机制,将静态场景保存为持久记忆,同时生成动态内容,支持精确相机控制和交互式3D编辑,在多项基准测试中表现优异。
人工智能安全公司Cyata发现LangChain核心库存在严重漏洞"LangGrinch",CVE编号为2025-68664,CVSS评分达9.3分。该漏洞可导致攻击者窃取敏感机密信息,甚至可能升级为远程代码执行。LangChain核心库下载量约8.47亿次,是AI智能体生态系统的基础组件。漏洞源于序列化和反序列化注入问题,可通过提示注入触发。目前补丁已发布,建议立即更新至1.2.5或0.3.81版本。
马里兰大学研究团队开发ThinkARM框架,首次系统分析AI推理过程。通过将思维分解为八种模式,发现AI存在三阶段推理节律,推理型与传统AI思维模式差异显著。研究揭示探索模式与正确性关联,不同效率优化方法对思维结构影响各异。这为AI系统诊断、改进提供新工具。