近日,第五届日本自动驾驶竞赛在东京大学落下帷幕。此次竞赛主题围绕L4级自动驾驶工厂场景,来自浪潮信息、东京大学、名古屋大学的团队分别获得冠、亚、季军。此外东京工业大学、日产、松下、住友等多个汽车、IT企业、高校团队也取得佳绩。
日本自动驾驶挑战赛现场
竞赛中,浪潮信息基于自动驾驶计算框架AutoDRRT和自动驾驶车载计算平台EIS400,完成L4级自动驾驶场景的感知、规划决策、控制算法方案开发和边缘侧部署,实现工厂无人运输场景下的烟雾、障碍物、连续弯道及狭窄道路的精准识别,创造了大赛最远行驶距离。
自动驾驶车载计算平台EIS400已经发布,自动驾驶计算框架AutoDRRT也已面向业界免费开源,汽车厂商、软件平台商和中间件软件开发商可免费下载使用:
https://github.com/IEIAuto/AutoDRRT.git
浪潮信息自动驾驶计算框架AutoDRRT和自动驾驶车载计算平台EIS400
自动驾驶挑战赛,顶尖团队下场解题
Japan Automotive AI Challenge是国际权威的自动驾驶竞赛,由日本工程师学会2019年发起,旨在针对自动驾驶开发的各类难题,面向全球自动驾驶工程师征集解决方案。今年的挑战赛围绕工厂无人运输场景,像“超级玛丽”一样,赛道会设置障碍物、烟雾气体干扰、S 形、L 形狭窄路径多个题目,驾驶最远距离的队伍将获得胜利。此次竞赛吸引了东京大学、东京工业大学、名古屋大学、浪潮信息、日产、松下、住友、马自达等50多支顶尖自动驾驶团队参与。经过预赛亚马逊云线上仿真模拟比拼,有17支队伍晋级现场决赛,包括7家高校队伍和10家企业参赛队伍。
自动驾驶竞赛决赛在东京大学户外举行,参赛队伍将基于业界主流的开源自动驾驶计算框架Autoware,开发自动驾驶软硬件全栈方案,并部署在真实车辆上,用算力、算法创新解决自动驾驶在工厂运输领域应用会面临的各类问题。考虑工厂内部行驶环境复杂,对自动驾驶系统的安全性、可用性和通过性有较高的要求,此次比赛设置了重点考核题目:
浪潮信息斩获模拟赛和真车赛的双料第一
作为全球领先的IT基础设施提供商,浪潮信息在自动驾驶领域拥有计算、软件框架和应用的全栈创新能力。面向工厂自动运输场景,浪潮信息基于今年最新发布的AutoDRRT开源框架和智能车载域控制器EIS400,进行了算力、算法和框架的全面优化,仅用时2个月就快速搭建了工厂自动驾驶全栈方案,并在50多个参赛队伍中脱颖而出,斩获模拟赛和真车赛的双料冠军。
自动驾驶车辆安全通过烟雾气体干扰路段
该方案包括了感知、决策规划、控制等算法的开发、计算并行与加速模块和开发工具的优化,以及底层系统、中间件和OS的优化,通过四大技术突破,实现了更高的鲁棒性、算法精度和计算性能:
凭借高性能算力及创新算法,浪潮信息在此次自动驾驶“超级玛丽”模拟赛和真车赛均创造了最远行驶距离,实现了最佳的安全性、可用性和通过性。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。