全新VMware Tanzu平台增强功能、Spring连同Spring AI、Spring Boot 3.2和Data Services,推动新一代现代化应用发展
中国北京,2023年11月8日—— VMware(NYSE: VMW)今天发布领先的Java开发框架——Spring的最新更新,以及VMware Tanzu Platforms、VMware Tanzu Data Services 和 VMware Tanzu Intelligence Services 增强功能,帮助团队更加快速、经济高效且安全地开发、运营和优化性能更强大的应用。
软件开发团队身处业务创新的最前沿,他们所构建的现代化应用推动企业市场份额和收入的增加。但要快速交付集成AI和机器学习等前沿技术的应用,往往需要学习新工具、平台,并掌握更多技能。即便越来越多的软件交付职责“左移”,这些要求也会使交付过程变得复杂。生成式AI将继续重塑各个行业,为所有企业带来巨大的机遇。
VMware 高级副总裁兼现代应用和管理业务集团总经理 Purnima Padmanabhan 表示: “如今,创新速度已成为企业在竞争中脱颖而出的关键。新一代应用的价值将通过机器学习、AI等新功能以及跨任何云的可扩展性得到提升。几十年来,我们一直致力于为开发人员提供优秀的工具和体验。今年正值Spring诞生 20周年,我们的最新增强功能以及与Tanzu Platform的深度集成支持应用团队能够在新应用中充分利用AI等更多前沿技术,并且快速、安全且更有保障地将这些应用用于生产。”
通过VMware Tanzu Application Platform实现现代化数据集成和创新
现代化应用的开发和交付日益复杂,给企业造成了太多“孤岛”、低效与风险。VMware Tanzu简化底层基础架构的体验、安全性、工具、内容和数据服务以及开发人员体验,使应用和基础架构团队可以更好地开展协作,安全且大规模地向任何地点的任何云交付更高质量的应用。VMware Tanzu 在其应用平台产品中推出了以下增强功能,帮助开发人员和平台团队通过软件交付业务成果:
Spring增强功能通过AI和应用安全为开发人员提供支持
今年是最常用的Java开发框架——Spring诞生20周年,也是Spring Boot诞生10周年。Spring Boot连续五年同比增长50%1。通过 Spring,开发人员可以将创新功能集成到熟悉的Spring体验中,从而简化构建新一代应用的路径,在日新月异的技术变革中保持领先。
今天的更新旨在提升应用性能,降低成本和提高安全性,以适应云容器和无服务器等现代化运营模式,包括:
Tanzu Data Services集成机器学习(ML)和AI功能,并简化数据机群管理
数据服务(包括消息传递、缓存、处理和数据库等)是现代化应用架构驱动跨任何云的下一代工作负载所不可或缺的。Tanzu Data Services增强功能增加了新的ML/AI 功能,提高并优化了性能,实现了管理的精简化,包括:
Tanzu Intelligence Services实现主动治理和持续优化
在VMware Explore 2023 Las Vegas 大会上首次推出的Tanzu Intelligence Services帮助企业洞察、持续改进和主动治理其应用和云相关的成本、性能与安全问题,通过近乎实时的策略来适应不断变化的业务需求。新功能包括:
Tanzu平台内的功能将继续被集成到通用控制平面 VMware Tanzu Hub 中。今天,我们将发布Tanzu Hub的增强功能,包括全新的用户体验和导航;来自 Tanzu Insights 的集成可观察性解决方案;来自 VMware Tanzu Transformer 的迁移规划和评估;来自 Tanzu CloudHealth 的成本报告,包括云智能摘要、成本历史记录、合理调整和异常检测;以及 Tanzu中的智能辅助功能增强为除了环境清单外,还可搜索第三方文档等外部来源,以便更好地诊断和解决跨环境的问题。
好文章,需要你的鼓励
卡内基梅隆大学发布了他们的一项最新研究,他们对20多个开源推理模型进行了后训练,涵盖数学推理、科学问答、代码生成、指令遵循等多个维度,最终发现,数学能力优异的模型,在其他任务上表现平平,甚至还不如未加强数学推理能力的原始模型
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
Meta正在建设名为Hyperion的数据中心,预计提供5千兆瓦算力支持其AI实验室。该项目占地面积足以覆盖曼哈顿大部分区域,位于路易斯安那州东北部,将在数年内扩展至5GW规模。此外,Meta还计划在2026年启用1GW的Prometheus超级集群。这些项目旨在提升Meta在AI竞赛中对抗OpenAI和谷歌的竞争力,但也将消耗大量电力和水资源。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。