Nvidia近日详细介绍了Eureka,一种可以自动训练机器人执行新任务的AI系统。
在一次内部评估中,Nvidia使用Eureka教10个模拟机器人29种不同的动作。工程师通常会在构建机器之前创建机器模拟版本以支持开发工作Eureka教Nvidia的虚拟机器人打开抽屉、表演转笔技巧以及执行其他相对复杂的任务。
很多机器人都是由强化学习模型的神经网络提供动力的。强化学习模型通过反复试验来学习执行任务:它们在模拟环境中多次重复该任务,直到弄清楚如何正确执行该任务。模拟学习环境中,包括一个充当神经网络测试台的虚拟机器人。
在此类项目中,AI训练过程由是一段称为奖励函数的代码进行监督的。当机器人的强化学习模型在学习过程中得出正确的结论时,该函数会“奖励”它,并在错误时对其进行惩罚,通过这种方式,强化学习模型将被引导找到操作机器人的正确方法。
为强化学习模型编写奖励函数历来是一项耗时且技术含量高的任务。据Nvidia称,这次推出的Eureka系统可以实现这个过程的自动化,系统会根据自然语言指令生成奖励函数,例如“教机械臂下棋”等。
Eureka在幕后使用OpenAI GPT-4将用户提示转化为奖励函数。除了提示本身之外,系统还接受所谓的环境代码作为输入,这是一种描述模拟机器人通过训练以执行新任务的代码。
据Nvidia称,Eureka 不仅会生成奖励函数,还会随着时间的推移对其进行不断改进。该系统创建了多个版本的奖励函数,并通过将其应用到模拟机器人来评估工作效果,然后会分析评估结果以找出改进的机会。
Eureka系统还可以在此过程中考虑开发人员的反馈,特别是允许工程师就如何增强机器人的奖励功能提供建议,这些建议已经纳入到代码优化过程中。
Nvidia表示,在测试的80%多的机器人动作中,Eureka奖励函数的表现优于人类编写的代码。结果,作为该项目一部分开发的10个模拟机器人更有效地执行了分配的任务,Nvidia的研究人员记录到机器人性能提高了52%。
参与Eureka开发的Nvidia人工智能研究高级总监Anima Anandkumar表示:“强化学习在过去十年中取得了令人印象深刻的胜利,但仍然存在许多挑战,例如奖励设计,这仍然是一个试错的过程。Eureka是开发新算法的第一步,这种算法集成了生成式学习和强化学习方法来解决那些困难的任务。”
Nvidia已经在GitHub上发布了Eureka的关键组件以及描述其工作原理的学术论文。工程师可以使用Nvidia的Isaac Gym程序运行该软件,该软件是一种专门为支持AI驱动型机器人开发而设计的模拟工具。
好文章,需要你的鼓励
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
英国政府研究显示,神经多样性员工从AI聊天机器人中获得的收益远超普通同事。在Microsoft 365 Copilot试点中,神经多样性员工满意度达90%置信水平,推荐度达95%置信水平,均显著高于其他用户。患有ADHD和阅读障碍的员工表示AI工具为他们提供了前所未有的工作支持,特别是在报告撰写方面。研究表明,AI工具正在填补传统无障碍技术未能解决的职场差距,为残障人士提供了隐形的工作辅助。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。