Nvidia近日详细介绍了Eureka,一种可以自动训练机器人执行新任务的AI系统。
在一次内部评估中,Nvidia使用Eureka教10个模拟机器人29种不同的动作。工程师通常会在构建机器之前创建机器模拟版本以支持开发工作Eureka教Nvidia的虚拟机器人打开抽屉、表演转笔技巧以及执行其他相对复杂的任务。
很多机器人都是由强化学习模型的神经网络提供动力的。强化学习模型通过反复试验来学习执行任务:它们在模拟环境中多次重复该任务,直到弄清楚如何正确执行该任务。模拟学习环境中,包括一个充当神经网络测试台的虚拟机器人。
在此类项目中,AI训练过程由是一段称为奖励函数的代码进行监督的。当机器人的强化学习模型在学习过程中得出正确的结论时,该函数会“奖励”它,并在错误时对其进行惩罚,通过这种方式,强化学习模型将被引导找到操作机器人的正确方法。
为强化学习模型编写奖励函数历来是一项耗时且技术含量高的任务。据Nvidia称,这次推出的Eureka系统可以实现这个过程的自动化,系统会根据自然语言指令生成奖励函数,例如“教机械臂下棋”等。
Eureka在幕后使用OpenAI GPT-4将用户提示转化为奖励函数。除了提示本身之外,系统还接受所谓的环境代码作为输入,这是一种描述模拟机器人通过训练以执行新任务的代码。
据Nvidia称,Eureka 不仅会生成奖励函数,还会随着时间的推移对其进行不断改进。该系统创建了多个版本的奖励函数,并通过将其应用到模拟机器人来评估工作效果,然后会分析评估结果以找出改进的机会。
Eureka系统还可以在此过程中考虑开发人员的反馈,特别是允许工程师就如何增强机器人的奖励功能提供建议,这些建议已经纳入到代码优化过程中。
Nvidia表示,在测试的80%多的机器人动作中,Eureka奖励函数的表现优于人类编写的代码。结果,作为该项目一部分开发的10个模拟机器人更有效地执行了分配的任务,Nvidia的研究人员记录到机器人性能提高了52%。
参与Eureka开发的Nvidia人工智能研究高级总监Anima Anandkumar表示:“强化学习在过去十年中取得了令人印象深刻的胜利,但仍然存在许多挑战,例如奖励设计,这仍然是一个试错的过程。Eureka是开发新算法的第一步,这种算法集成了生成式学习和强化学习方法来解决那些困难的任务。”
Nvidia已经在GitHub上发布了Eureka的关键组件以及描述其工作原理的学术论文。工程师可以使用Nvidia的Isaac Gym程序运行该软件,该软件是一种专门为支持AI驱动型机器人开发而设计的模拟工具。
好文章,需要你的鼓励
这项研究由新加坡国立大学团队开发的DualParal技术,通过创新的双重并行架构解决了AI视频生成的长度限制问题。该方法同时在时间帧和模型层两个维度实现并行处理,配合分块降噪机制、特征缓存和协调噪声初始化策略,使生成分钟级长视频成为可能。实验表明,在生成1,025帧视频时,DualParal比现有技术减少了高达6.54倍的延迟和1.48倍的内存成本,同时保持了高质量的视频输出,为内容创作者提供了生成更长、更复杂视频叙事的新工具。
SoloSpeech是约翰霍普金斯大学研究团队开发的创新语音处理技术,针对"鸡尾酒会效应"问题提出了全新解决方案。该系统通过级联生成式管道整合压缩、提取、重建和校正过程,实现了高质量目标语音提取。与传统判别式模型相比,SoloSpeech采用无需说话者嵌入的设计,直接利用提示音频的潜在空间信息与混合音频对齐,有效避免特征不匹配问题。在Libri2Mix及多个真实世界数据集上的评测显示,SoloSpeech在清晰度、质量和泛化能力上均达到了领先水平,为语音分离技术开辟了新方向。
这项由北京大学深圳研究生院、伟湾大学、腾讯ARC实验室和兔小贝智能联合研究的Sci-Fi框架,通过创新的对称约束机制,解决了视频帧间插值中的关键问题。研究团队设计了轻量级EF-Net模块,增强结束帧约束力,使其与起始帧形成平衡影响,从而生成更自然流畅的中间过渡帧。实验证明,该方法在各种场景下都优于现有技术,特别适用于电影制作、动画创作和视频编辑领域,显著降低了人力成本。
这项来自西北大学和谷歌的研究突破了传统马尔可夫强化学习的局限,通过贝叶斯自适应RL框架解释了大语言模型中涌现的反思性推理行为。研究团队提出的BARL算法通过维护多个解题策略的后验分布,指导模型何时何地进行反思性探索,在数学推理任务上展现出显著优势,比基线方法减少高达50%的标记使用量,同时提高了准确率。这一研究不仅解释了"为什么反思有用",还提供了实用的指导原则,为AI系统的自适应推理能力开辟了新方向。