Nvidia近日公布第二季度财报,结果超出了华尔街的预期目标,同时Nvidia给出了强有力的指引,这使得股价在盘后交易中上涨超过6%,收于历史最高值。

这家芯片制造商表示,AI的兴起和向“加速计算”的转变推动了Nvidia取得令人印象深刻的增长,这不足为怪。
该季度Nvidia的每股收益为2.70美元,轻松超过华尔街预期的每股2.09美元。收入增长88%,达到135.1亿美元,远远高于分析师普遍预期的112亿美元。更引人注目的是Nvidia的净利润,从一年前的6.56亿美元飙升至61.9亿美元。
Nvidia这趟高速列车也不会很快停下来,Nvidia预计第三季度收入在156.8亿美元至163.2亿美元之间,远远超出华尔街预期的125.9亿美元。
Nvidia销售额的强劲增长,凸显了Nvidia在生成式AI热潮中发挥的关键作用。OpenAI和ChatGPT引发了人们对新一代AI模型的巨大兴趣,这些模型可以像人类一样创建文本、绘制图像和说话,并在多种工作场景中充当人类的助手。
然而,如果没有Nvidia的A100和H100 GPU(这些应用的核心),那么这些模型都无法工作。GPU是用于训练和运行AI应用最主流的芯片类型,Nvidia基本上垄断了这项技术的市场。
由于市场对GPU的需求不断增长,云计算基础设施平台正在迅速转型以支持这个行业的转型。据报道,AWS、微软Azure和谷歌云等大型云运营商一直在大量购买Nvidia的GPU。与此同时,许多全球领先的企业软件巨头正在与Nvidia直接合作,将AI引入多个行业。
在与分析师的电话会议上,Nvidia公司首席执行官黄仁勋(如图)表示,数据中心行业正在同时经历两个平台转变,即加速计算和生成式AI。他说:“这个令人难以置信的应用让人们有两个理由去做平台上的转型,从通用计算——也就是传统的计算方式——转向这种新的计算方式:加速计算。”
作为全球唯一的GPU主要供应商,这一转变可以为Nvidia带来巨额的利润。黄仁勋解释说:“世界上已经装机了价值约一万亿美金的数据中心,在云中、在企业内以及其他地方。价值数万亿美金的数据中心正在转变为加速计算和生成式AI。”
Nvidia公司首席财务官Colette Kress向分析师表示,推动芯片销售的不仅仅是Nvidia最新的Ada Lovelace GPU架构,除此之外Nvidia还销售数千个基于旧版Ampere硬件的GPU和DGX超级计算机平台。
“我们仍在市场上销售这两种架构,现在你考虑这个问题的时候,这对于两个系统作为一个整体意味着什么?当然,它正在大幅增长,推动了收入的增长。”
甚至今天财报之前,Nvidia的股价今年就已经上涨了两倍,是标普500指数中表现最好的股票,在撰写本文时,Nvidia的股价已经突破每股503.40美元。如果周四收于该水平,则与7月18日收盘高点474.94美元相比,将创下新的纪录。
这一业绩也显示出Nvidia是如何进行业务转型的。尽管游戏业务曾经是最赚钱的业务,但现在与不断增长的数据中心部门相比,显得有些相形见绌。Nvidia表示,数据中心业务收入较上年同期增长171%,达到103.2亿美元,远高于分析师普遍预测的80.3亿美元。
对Nvidia来说更好的是,现在规模小得多的游戏业务也在继续增长,收入同比增长22%,达到24.9亿美元,也高于华尔街预期的23.8亿美元。Nvidia早期的GPU最初是为显卡供电而设计的,后来才发现适合AI。
Nvidia还有一家小型企业,生产用于高端图形应用的GPU。这部分业务收入较去年同期下降24%,仅为3.79亿美元。第四个汽车业务部门销售额增加2.53亿美元,同比增长15%。
Kress在电话会议中提到了分析师对Nvidia业务可能受到中国进一步出口限制影响的担忧,近期中国采购了Nvidia数百万块GPU。她表示,Nvidia公司预计业务不会面临任何直接风险。她表示:“鉴于全球对我们产品的需求强劲,预计对我们数据中心GPU实施额外的出口限制(如果采取)不会对我们的财务业绩产生直接的实质性影响。”
根据今天公布的财报,Nvidia成为美国市值第五大公司,仅次于苹果公司、微软公司、Alphabet公司和亚马逊公司。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。