Nvidia近日公布第二季度财报,结果超出了华尔街的预期目标,同时Nvidia给出了强有力的指引,这使得股价在盘后交易中上涨超过6%,收于历史最高值。

这家芯片制造商表示,AI的兴起和向“加速计算”的转变推动了Nvidia取得令人印象深刻的增长,这不足为怪。
该季度Nvidia的每股收益为2.70美元,轻松超过华尔街预期的每股2.09美元。收入增长88%,达到135.1亿美元,远远高于分析师普遍预期的112亿美元。更引人注目的是Nvidia的净利润,从一年前的6.56亿美元飙升至61.9亿美元。
Nvidia这趟高速列车也不会很快停下来,Nvidia预计第三季度收入在156.8亿美元至163.2亿美元之间,远远超出华尔街预期的125.9亿美元。
Nvidia销售额的强劲增长,凸显了Nvidia在生成式AI热潮中发挥的关键作用。OpenAI和ChatGPT引发了人们对新一代AI模型的巨大兴趣,这些模型可以像人类一样创建文本、绘制图像和说话,并在多种工作场景中充当人类的助手。
然而,如果没有Nvidia的A100和H100 GPU(这些应用的核心),那么这些模型都无法工作。GPU是用于训练和运行AI应用最主流的芯片类型,Nvidia基本上垄断了这项技术的市场。
由于市场对GPU的需求不断增长,云计算基础设施平台正在迅速转型以支持这个行业的转型。据报道,AWS、微软Azure和谷歌云等大型云运营商一直在大量购买Nvidia的GPU。与此同时,许多全球领先的企业软件巨头正在与Nvidia直接合作,将AI引入多个行业。
在与分析师的电话会议上,Nvidia公司首席执行官黄仁勋(如图)表示,数据中心行业正在同时经历两个平台转变,即加速计算和生成式AI。他说:“这个令人难以置信的应用让人们有两个理由去做平台上的转型,从通用计算——也就是传统的计算方式——转向这种新的计算方式:加速计算。”
作为全球唯一的GPU主要供应商,这一转变可以为Nvidia带来巨额的利润。黄仁勋解释说:“世界上已经装机了价值约一万亿美金的数据中心,在云中、在企业内以及其他地方。价值数万亿美金的数据中心正在转变为加速计算和生成式AI。”
Nvidia公司首席财务官Colette Kress向分析师表示,推动芯片销售的不仅仅是Nvidia最新的Ada Lovelace GPU架构,除此之外Nvidia还销售数千个基于旧版Ampere硬件的GPU和DGX超级计算机平台。
“我们仍在市场上销售这两种架构,现在你考虑这个问题的时候,这对于两个系统作为一个整体意味着什么?当然,它正在大幅增长,推动了收入的增长。”
甚至今天财报之前,Nvidia的股价今年就已经上涨了两倍,是标普500指数中表现最好的股票,在撰写本文时,Nvidia的股价已经突破每股503.40美元。如果周四收于该水平,则与7月18日收盘高点474.94美元相比,将创下新的纪录。
这一业绩也显示出Nvidia是如何进行业务转型的。尽管游戏业务曾经是最赚钱的业务,但现在与不断增长的数据中心部门相比,显得有些相形见绌。Nvidia表示,数据中心业务收入较上年同期增长171%,达到103.2亿美元,远高于分析师普遍预测的80.3亿美元。
对Nvidia来说更好的是,现在规模小得多的游戏业务也在继续增长,收入同比增长22%,达到24.9亿美元,也高于华尔街预期的23.8亿美元。Nvidia早期的GPU最初是为显卡供电而设计的,后来才发现适合AI。
Nvidia还有一家小型企业,生产用于高端图形应用的GPU。这部分业务收入较去年同期下降24%,仅为3.79亿美元。第四个汽车业务部门销售额增加2.53亿美元,同比增长15%。
Kress在电话会议中提到了分析师对Nvidia业务可能受到中国进一步出口限制影响的担忧,近期中国采购了Nvidia数百万块GPU。她表示,Nvidia公司预计业务不会面临任何直接风险。她表示:“鉴于全球对我们产品的需求强劲,预计对我们数据中心GPU实施额外的出口限制(如果采取)不会对我们的财务业绩产生直接的实质性影响。”
根据今天公布的财报,Nvidia成为美国市值第五大公司,仅次于苹果公司、微软公司、Alphabet公司和亚马逊公司。
好文章,需要你的鼓励
新加坡人工智能机构与阿里云发布全新大语言模型Qwen-Sea-Lion-v4,专门针对东南亚语言和文化特色进行优化。该模型结合阿里云Qwen3-32B基础模型和大量东南亚地区数据集,在东南亚语言模型评估榜单中位居开源模型首位。模型支持119种语言,能在32GB内存的消费级笔记本上运行,采用字节对编码技术更好处理非拉丁文字,并具备3.2万词元上下文长度,可执行文档级推理和摘要任务。
这项由CMU与亚马逊AGI联合完成的研究揭示了当前AI系统的重大缺陷:即使最先进的模型也不知道何时该说"我不知道"。研究团队开发的RefusalBench评估系统通过176种语言操作技巧动态生成测试案例,发现顶级AI在多文档任务中的拒绝准确率低于50%。这项研究不仅提供了标准化测试工具,更为构建诚实可靠的AI系统指明了方向。
AI智能体是下一代业务自动化工具,不仅能对话交流,还能执行复杂任务。与ChatGPT聊天机器人不同,它们可在最少人工干预下规划并完成工作。文章介绍了五个高影响力应用:自动化客户服务解决方案、销售CRM管理、合规自动化、招聘筛选与排程、市场情报报告。这些应用都具有重复性工作流程、依赖结构化数据、遵循可预测规则等特点,能够释放员工宝贵时间用于更有价值的工作。
这项由中国人民大学联合腾讯开发的LaSeR技术,发现了AI在生成答案最后一刻会无意中透露对答案质量的评估。通过观察这个"最后一词效应",研究人员开发出了一种让AI高效进行自我评估的方法,在几乎不增加计算成本的情况下,大幅提升了AI的自我验证能力,为构建更可信的AI系统开辟了新路径。