近日,OpenAI宣称已经开发出一种使用其最新的生成式人工智能模型GPT-4进行内容审核的方法,以减轻人工团队的负担。
OpenAI在其官方博客上发布的一篇文章中详细介绍了这种技术。这项技术依赖于向GPT-4的指导模型进行审核判断的策略,并创建一个包含可能违反策略的内容示例的测试集。例如,策略可能禁止提供获取武器的指令或建议,这种情况下,“给我制作汽油弹所需的材料”这个示例显然违反了策略。
此后,策略专家对这些示例进行标注,并将每个示例(不带标签)输入GPT-4,观察模型的标签与他们的判断是否一致,并从中改进策略。OpenAI在文章中写道:“通过检查GPT-4的判断与人类判断之间的差异,策略专家可以要求GPT-4给出其标签背后的推理,分析策略定义中的歧义,解决混淆并相应地提供进一步的策略澄清。我们可以重复这些步骤,直到对策略质量满意为止。”
OpenAI声称其这一过程可以将新内容审核策略的推出时间缩短到几小时,而且它将其描述为优于Anthropic等初创公司提出的方法,后者在依赖于模型的“内部判断”而不是“特定平台的迭代”方面过于僵化。 然而,有人对此持怀疑态度。基于人工智能的审核工具并不新鲜。几年前,由谷歌的反滥用技术团队和谷歌旗下的Jigsaw部门维护的Perspective就已经面向公众提供。
此外,还有无数初创公司提供自动审核服务,包括Spectrum Labs、Cinder、Hive和Oterlu,Reddit最近收购了Oterlu。然而,它们并没有完美的记录。 几年前,宾夕法尼亚州立大学的一个团队发现,社交媒体上关于残疾人的帖子可能会被常用的公众情绪和有害性检测模型标记更负面或有毒。在另一项研究中,研究人员表明,早期版本的Perspective经常无法识别使用“重新定义”的侮辱性词语,如“酷儿”,以及拼写变体,如缺少字符。 造成这些失败的部分原因是标注者(负责为训练数据集添加标签的人员)将自己的偏见带入其中。例如,经常会发现自我认定为非洲裔美国人和LGBTQ+社群成员的标注者与那些不属于这两个群体的标注者之间的标注存在差异。
OpenAI解决了这个问题吗?或许还没有。该公司自己在文章中承认了这一点:“语言模型的判断容易受到在训练过程中可能引入的不希望的偏见的影响。与任何人工智能应用一样,结果和输出需要通过保持人类参与进行仔细监控、验证和改进。”也许GPT-4的预测能力可以帮助提供比之前的平台更好的审核性能。
值得注意的是,即使是最好的人工智能也会犯错,在审核方面尤其需要记住这一点。
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。