近日,明略科技集团实现了机器学习可视化工具——TensorBoard的C++接口,进一步丰富了基于C++的大模型项目工具集,使得大模型预训练过程监控更加便捷、高效,加速营销领域大模型预训练进程。该工具已在Github开源。
TensorBoard是Google开发的一款机器学习可视化工具,常用于监测机器学习过程的各项指标。明略科技高级技术总监赵亮介绍:“在大模型训练过程中,数据监测是一个重要维度,而TensorBoard通过可视化模型中的各种参数和结果,例如记录大模型训练过程的Loss变化、验证集的PPL变化、学习率变化、Token消耗量、单步参数更新时延等指标,帮助分析训练状态,发现训练过程中出现的问题并及时采取干预措施,提升大模型训练进程和效果。”
明略科技开源的C++接口TensorBoard工具页面
此前,TensorBoard仅支持Python语言接口。此次明略科技通过C++实现TensorBoard,将进一步丰富基于C++实现的大模型项目工具集,大幅提升模型训练监测效率,加速模型训练进程,改写接口后的工具将通过多维度的数据模式展示训练指标,包括标量、直方图、图像、图像合集、音频、文本等数据模式。该工具包通过github项目Tensorboard.cpp分享,助力更多研究者和开发者参与并加速大模型的研发进程,推动人工智能多领域的应用探索。
明略科技在Github开源的两款工具包:ASR-BlockFormer与tensorboard.cpp
明略科技集团CTO郝杰表示:
“我们要在更高效、更低成本的要求下做出营销领域的大模型,通过自适应技术提升大模型的能力。好的行业大模型需要具备通用大模型的逻辑性、语言顺畅度,同时还需要实现通用大模型所不具备的,在某个行业内或具体的领域中的真实性、专业性。我们以明略科技凭借17年来积累的海量行业数据为基础,从客户实际需求出发,借助庞大的数据和知识库进行增强训练,满足客户多样化的任务和场景需求。在训练监测可视化工具的加持下,我们将提升训练速度,及时发现问题,为客户打造一个更加可靠、效果更好的行业大模型。”
好文章,需要你的鼓励
腾讯今日开源混元MT系列语言模型,专门针对翻译任务进行优化。该系列包含四个模型,其中两个旗舰模型均拥有70亿参数。腾讯使用四个不同数据集进行初始训练,并采用强化学习进行优化。在WMT25基准测试中,混元MT在31个语言对中的30个表现优于谷歌翻译,某些情况下得分高出65%,同时也超越了GPT-4.1和Claude 4 Sonnet等模型。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
今年是Frontiers Health十周年。在pharmaphorum播客的Frontiers Health限定系列中,网络编辑Nicole Raleigh采访了Startup Health总裁兼联合创始人Unity Stoakes。Stoakes在科技、科学和设计交汇领域深耕30多年,致力于变革全球健康。他认为,Frontiers Health通过精心选择的空间促进有意义的网络建设,利用网络效应推进创新力量,让企业家共同构建并带来改变,从而有益地影响全球人类福祉。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。