Nvidia公司创始人、首席执行官黄仁勋表示,由Nvidia最强大的硬件支持的人工智能正在被用于加速计算机芯片制造并打造更先进的微处理器。

在Interuniversity Microelectronics Centre年度活动ITF World大会上,黄仁勋向半导体、技术和通信行业的领导者发表讲话称,CPU性能呈现指数级增长是近四十年来科技行业的主导动力,然而因为要把更多的晶体管挤压到硅晶片上变得越来越困难,因此CPU变得更高效、更强大的速度也正在放缓,与此同时,对更先进的计算硬件的需求也在不断飙升。
“因此,全球对云计算的需求正在导致数据中心功耗猛增,”黄仁勋表示。
为了满足这一需求,Nvidia公司最先采用了一种新的方法,该方法涉及将GPU的并行处理能力与CPU相结合。黄仁勋说,正是这种新方法引发了AI革命,Nvidia的回应就是要重塑其深度学习计算堆栈,从而在机器人、自动驾驶汽车和制造业领域创造新的机遇。
据黄仁勋介绍说,先进的芯片制造涉及到要通过1000多个步骤来生产生物分子大小的特征,更重要的是,每个步骤都必须几乎完美地处理才能产生功能性输出。
他说:“其中每个阶段都要进行复杂的计算科学,以计算要模式化的特征并为在线过程控制进行缺陷检测,芯片制造是Nvidia加速和AI计算的一个理想应用。”
AI加速芯片制造
黄仁勋在他的主题演讲中,概述了Nvidia将GPU用于推进芯片制造工艺的几种方式。例如,D2S、IMS Nanofabrication和NuFlare Technology正在使用Nvidia的硬件来帮助构建“掩模写入器”(一种创建光掩模的专用设备),或者是使用电子束将图案转移到硅晶片上的模板,Nvidia GPU从而帮助加速图形渲染和掩模过程校正等计算要求高的任务。
与此同时,台积电、KLA和Laser Technology正在利用Nvidia的GPU来帮助进行极紫外光和深紫外光掩模检测。黄仁勋解释说,GPU通过处理经典物理模型和深度学习来生成合成参考图像和检测缺陷。
此外,Nvidia正在与多家芯片制造商进行合作,通过Nvidia的GPU硬件加速计算光刻。黄仁勋说,计算光刻涉及到模拟麦克斯韦的光行为方程,通过光学器件并与光刻胶相互作用。这是芯片设计和制造中最大的一种计算工作负载,通常每年要消耗数百亿个CPU小时。黄仁勋解释说,作为新芯片光罩设计过程的一部分,芯片制造商将全天候24/7运行庞大的数据中心来处理此类工作负载。
为了提高这些工作负载的效率,Nvidia最近发布了名为Nvidia cuLitho的新软件库,其中包括了用于GPU加速计算光刻的各种优化工具和算法。黄仁勋表示,他相信这将是推动芯片设计超越2纳米的一个最重要的技术进步。
他说:“我们已经将处理速度提高了50倍,数以万计的CPU服务器可以被数百个Nvidia DGX系统取代,从而将功耗和成本降低一个数量级。”
具象AI
展望未来,黄仁勋认为我们即将创建他所谓的“具象AI”的新一代人工智能系统。他说,这是一些能够理解、推理并与物理世界互动的智能系统,例如可以理解物理世界的机器人、自动驾驶汽车和聊天机器人。
Nvidia已经迈出了实现具象AI的第一步。黄仁勋介绍了一种名为Nvidia VIMA的新型多模态AI,它可以根据视觉提示执行任务,例如重新排列多个对象以匹配给定的场景,还可以从概念中学习并采取相应的行动,比如“这是一个小部件”,“那是一个东西”,然后“把这个小部件放在那个东西里,”他说。
他说,Nvidia正在通过另一个项目构建地球的数字孪生“Earth-2”,它将能够预测天气和气候变化。Earth-2位于Nvidia Omniverse中,是一个3D开发和模拟平台,结合了一个名为FourCastNet的物理AI模型,该模型模拟全球天气模式的速度比现有模型快50000到100000倍。它运行在Nvidia的GPU上,将用于解决对廉价清洁能源、气候变化解决方案以及半导体制造技术进步的需求,黄仁勋承诺说。
“我期待物理AI、机器人技术和基于Omniverse的数字孪生有助于推动芯片制造的未来。”
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
清华团队开发DKT模型,利用视频扩散AI技术成功解决透明物体深度估计难题。该研究创建了首个透明物体视频数据集TransPhy3D,通过改造预训练视频生成模型,实现了准确的透明物体深度和法向量估计。在机器人抓取实验中,DKT将成功率提升至73%,为智能系统处理复杂视觉场景开辟新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
字节跳动研究团队提出了专家-路由器耦合损失方法,解决混合专家模型中路由器无法准确理解专家能力的问题。该方法通过让每个专家对其代表性任务产生最强响应,同时确保代表性任务在对应专家处获得最佳处理,建立了专家与路由器的紧密联系。实验表明该方法显著提升了从30亿到150亿参数模型的性能,训练开销仅增加0.2%-0.8%,为混合专家模型优化提供了高效实用的解决方案。