人工智能(AI)被普遍认为是数字化转型的关键组成部分,部署AI在很大程度上由5G及相关服务的复杂性驱动。云端无处不在的特性及其更实惠的计算资源促进了电信公司和其它公司采用AI。

最近,NVIDIA调查了中国在内的全球400多名电信行业专业人士对其公司和行业内实施基于人工智能的实践的机遇和挑战的看法。

本报告总结了关键的调查见解,并对于2023年电信行业中人工智能的定义、投资决策和实施方法进行了详细说明。
尽管调查结果显示人工智能备受关注,但电信行业仍处于人工智能采用的早期阶段且需要支持以获得明确的投资回报。
人工智能在电信领域的机遇与挑战
根据调查显示,电信业界对AI的重视程度非常高,行业相关方明显对AI表现出浓厚兴趣。
然而,在调查中,只有34%的受访者表示他们已经使用AI超过六个月,23%的受访者说他们还在了解不同的AI应用场景,18%报告称他们正在进行AI试点项目。
对于处于试验或实施阶段的受访者,绝大多数认为AI已经对收入和成本产生了积极影响。约73%的受访者报告称,AI实施在过去一年中导致了收入增长,其中17%的受访者指出在业务的某些具体部分中实现了超过10%的收入增长。
同样, 80%的受访者报告称他们实施了AI后,过去一年中实现了降低年度成本,其中15%的受访者指出在业务的某些具体部分中,成本降低超过了10%。
左右电信企业AI投资的影响因素
尽管有关AI对收入和成本的积极影响的报道不断出现,但许多受访者仍然难以量化其AI投资的投资回报率。约44%的受访者认为无法充分量化投资回报率,这说明企业引入基于AI的解决方案的愿望与现实之间存在差异。
在每年数十亿资本支出的行业中,AI的投资水平似乎较低。通常,中型至大型电信公司每年至少会花费10亿美元用于资本支出。然而,60%的受访者(2021年)和50%的受访者(2022 年)在AI方面的支出不到100万美元。在高端,2%的受访者在2021年支出超过5000万美元,在2022年上升到3%。
在所有推动人工智能投资的因素中,从概念证明和试点阶段到实施阶段的转变是最显着的回应。经济不确定性和需要优先在其他方面进行支出也促使了决策。
与使用人工智能优化运营的期望一致,受访者指出,他们的公司现在将人工智能投资优先考虑在网络运营、客户体验优化和网络规划方面。
电信企业部署AI的最佳实践
调查显示,54%的电信公司正在混合环境中部署AI解决方案,因为他们希望在享受云的高效性的同时保持本地环境的增强隔离和控制。
那些担心信息安全的人更有可能选择本地环境。相反,那些寻求从云解决方案的广泛性、可用性和性能中获益的人更有可能选择云环境。其实,部署环境的选择就是在安全和性能之间进行权衡。
所谓“专业的人做专业的事”,在AI方面,电信公司依靠其合作伙伴提供物资、支持和专业知识,建立基础设施、运营或为客户开发服务。
47%的受访者报告说他们的AI 解决方案是与合作伙伴共同开发的,61%的人表示他们在AI支出的首要任务是“与第三方合作伙伴合作以加速AI采用”。
合作伙伴关系还为电信公司创造了机会,以更低的投资成本为客户创建新服务,并能够快速扩展。51%的受访者表示他们为内部和外部用户开发AI解决方案。
结语
AI在电信行业的作用才刚刚开始。
AI将渗透到价值链的所有环节,帮助推动网络规划和部署、网络运营、客户互动以及新产品和服务的创造性转变。
AI将释放机遇并解决可能影响净收入(通过通过优化资本支出和运营支出改善TCO)和总收入(通过创造新的收入)的挑战。
您准备好开始了吗?点击注册下载白皮书,了解关于“电信领域AI十个关键见解”的更多内容!
好文章,需要你的鼓励
PDF协会在欧洲会议上宣布,将在PDF规范中添加对JPEG XL图像格式的支持。尽管Chromium团队此前将该格式标记为过时,但此次纳入可能为JXL带来主流应用机会。PDF协会CTO表示,选择JPEG XL作为支持HDR内容的首选解决方案。该格式具备广色域、超高分辨率和多通道支持等优势,但目前仍缺乏广泛的浏览器支持。
华东理工大学团队开发了3DEditFormer系统和3DEditVerse数据集,首次实现了无需手工3D遮罩的高质量3D模型编辑。该技术通过双重引导注意力和时间自适应门控机制,让3D编辑变得像2D修图一样简单直观,在游戏开发、影视制作、AR/VR等领域具有广阔应用前景,标志着3D编辑技术向普及化迈出重要一步。
Ironclad OS项目正在开发一个新的类Unix操作系统内核,面向小型嵌入式系统,计划支持实时功能。该项目的独特之处在于采用Ada编程语言及其可形式化验证的SPARK子集进行开发,而非常见的C、C++或Rust语言。项目还包含运行在Ironclad内核上的完整操作系统Gloire,使用GNU工具构建以提供传统Unix兼容性。
上海AI实验室联合多所高校突破多模态AI训练难题,提出NaViL原生训练方法。通过预训练语言模型起点、混合专家架构和视觉-语言能力最佳平衡三大创新,在有限资源下实现与拼装式模型相当性能。该研究证明原生训练的可行性,为AI真正理解图文结合提供新思路,有望在教育、医疗等领域带来更自然的人机交互体验。