NASA的Harmonized Landset-Sentinel2 (HLS2) 数据集中,容纳的正是来自NASA Landset与ESA Sentinel的卫星数据。
NASA掌握着海量数据,且总体规模也在与日俱增。虽然部分数据能临到即时处理,但大部分数据都会被纳入归档以待日后分析,时间间隔有时甚至长达数年。如果研究人员要利用这些数据研究某些涉及动态变化特征(例如全球气候变化)的关键问题,就必须找到更好的解决方案。为了提高数据的及时处理和使用能力,NASA马歇尔太空飞行中心宣布与IBM研究院合作建立开发计划,使用IBM的基础AI技术处理NASA数据。
为了正确理解任务要求,我们将45 TB的GPT-3数据集作为比较对象。由此数据集训练而成的ChatGPT AI平台,最近刚刚通过了沃顿商学院的MBA考试。相比之下,NASA掌握的数据集预计超过250 PB,1PB约等于1000 TB,意味着NASA数据集的体量是GPT-3数据集的5000多倍。但这样一项艰巨的任务,也蕴含着种种突破性的可能。
此前,IBM估计收集到的数据中有90%从未被使用。在新闻稿中,蓝色巨人和NASA也提到“目前,全部科学发现中的一半都来自归档数据,研究人员正借此研究持续变化的挑战性威胁,比如气候变化。”而要想打造出与之匹配的海量归档数据挖掘方案,就必须借助AI的力量。IBM研究院掌握着海量云资源、AI专家的集体经验和坚实的AI基础模型技术,将帮助NASA将地球科学数据的过滤与分析周期由以往的几年甚至几十年,缩减为数月甚至是数天。
首个基础模型将使用超30万份地球科学刊物进行训练,从中提取上下文信息。这一阶段强调的是对现有数据的搜索和调查能力。第二个模型将以美国地质调查局(USGS)和NASA的Harmonized Landset-Sentinel2 (HLS2) 卫星数据集为训练素材。HLS2中的数据来自NASA/USGS Landsat 8 、Landsat 9 以及 ESA(欧洲航天局)Sentinel-2A 和 Sentinel-2B 联合卫星,以两到三天为周期生成可供分拆且经过调协的表面反射率数据。
根据NASA网页,Landsat 8和Landsat 9数据集合(空间分辨率为30米,重复周期为16天)同ESA Sentinel-2A/B集合(空间分辨率为10至20米,重复周期为5天)的结合将顺畅无缝。调协得出的最终数据集能够建立地表观测结果,空间分辨率为30米、重复周期为2到3天。
HLS数据会定期刷新,供研究人员对地表进行时间序列观察,分辨率可具体至田野/地块。这套统一的数据集可用于检测自然灾害、跟踪植被变化、观察虫害动向及野生动物栖息地迁移等。
IBM和NASA表示项目仍处于早期发展阶段。IBM基础模型目前正在IBM Cloud的众多英伟达A100 GPU上训练。但具体是在本地处理还是交由数据中心执行,将取决于“数据引力”(NASA数据是否足够便携以发送至云端,或者计算资源是否必须靠近数据)和应用于工作负载的具体计算资源。
NASA希望利用这些基础模型面向天气预报、气候分析、地质分析等领域生成transformer模型(即针对特定应用定制的AI模型)。其训练数据集和基础模型均保持开源,可供其他研究人员使用。理论上,NASA数据也可与其他美国/国际政府机构的数据相结合,例如美国国家海洋和大气管理局(NOAA)及农业部,以进一步完善训练数据集、将基础模型的覆盖范围扩大到地球科学的更多角落。
双方合作有望产生广泛影响。研究人员将掌握更强大的地球数据监测与分析能力;IBM自身可以将这些数据传递给子公司Weahter.com,更好地模拟天气模式及气候对地球的影响;由此产生的模型,也将对农业、渔业、石油和天然气勘探、采矿等更多行业的商业运营直到重要指导作用。
既然像GPT-3这样的大数据集能在短短几个月内就训练出智能聊天平台,那覆盖整个地球的超级数据集和由此产生的AI基础模型也许能帮助人类更好地了解、监测我们生活的这颗星球,最终创造出更加美好的未来。
好文章,需要你的鼓励
加利福尼亚大学和萨里大学研究团队开发了一种创新的AI系统,能够仅通过简单的手绘素描就在复杂照片中精确识别关键点。这项技术突破了传统机器学习需要大量同类数据的限制,实现了真正的跨模态学习。系统在动物关键点识别任务中达到了39%的准确率,超越现有方法约5个百分点,并且在真实手绘素描测试中表现稳定。该技术有望在生物学研究、医疗诊断、工业检测等多个领域找到广泛应用。
AI系统正变得越来越善于识别用户偏好和习惯,像贴心服务员一样定制回应以取悦、说服或保持用户注意力。然而这种看似无害的个性化调整正在悄然改变现实:每个人接收到的现实版本变得越来越独特化。这种认知漂移使人们逐渐偏离共同的知识基础,走向各自的现实世界。AI个性化不仅服务于我们的需求,更开始重塑这些需求,威胁社会凝聚力和稳定性。当真相本身开始适应观察者时,它变得脆弱且易变。
约翰霍普金斯大学发布DOTRESIZE技术,通过最优传输理论实现AI大模型智能压缩。该方法将相似神经元合并而非删除,在保持性能的同时显著降低计算成本。实验显示,压缩20%后模型仍保持98%性能,为AI技术普及和可持续发展提供新路径。