库存发生损失是零售商不可避免发生的事情。全球零售业面临着一个价值1000亿美元的难题——库存“损耗”,即由于盗窃、损坏和错放而造成的货物损失,这会在极大程度上削弱零售商的利润。
根据美国零售联合会(National Retail Federation)与零售防损委员会(Loss Prevention Research Council)合作开展的 《2022 年零售业安全调查》,估计65%的商品损耗是由于盗窃造成的。多家零售商表示,由于食品和其他必需品价格上涨,近期的盗窃事件增加了一倍以上。
成功的库存管理常常是基于速度和准确性。库存的自动化是一个现代化的技术,可以提高仓库的效率。NVIDIA专注于帮助零售商和解决方案提供商创建人工智能解决方案。
为了让开发者能够更轻松且快速地构建并推出能够防止盗窃现象的应用程序,NVIDIA宣布推出三个基于其Metropolis云原生微服务的零售AI工作流。这些工作流可用作防损应用程序的无代码或低代码构建模块。其基于最常被盗产品的图像以及软件进行了预训练,能够接入商店内现有的应用程序,追踪销售点机器以及整个商店内的对象和产品。
开发者可使用全新NVIDIA零售AI工作流,快速构建防损应用程序。该工作流基于云原生微服务而构建,包括针对数百种容易被盗的产品进行预训练的模型,从而提高需求预测的准确性。
通过 NVIDIA AI Enterprise软件套件提供的NVIDIA零售AI工作流包括:
1、零售防损AI工作流:该工作流中的AI模型经过预训练,可以识别数百种最常因盗窃而丢失的产品,包括肉类、酒类和洗衣粉,并能识别各种包装尺寸和形状。借助NVIDIA Omniverse的合成数据生成功能,零售商和独立软件供应商可针对数十万种店内产品,对模型进行定制化和进一步训练。
该工作流基于NVIDIA Research开发的最先进的少样本学习技术,再结合主动学习,可识别并捕获客户和销售人员在结账时扫描的任何新产品,最终提高模型准确性。
2、多摄像头追踪AI工作流:提供多目标、多摄像头(MTMC)功能,使应用开发者能够更轻松地创建系统,以通过商内的多个摄像头来进行对象追踪。该工作流通过摄像头来追踪对象和店员,每个对象拥有一个唯一ID。对象的追踪是基于视觉嵌入或外观,而非个人生物识别信息,以全面保障购物者的隐私。
3、零售商店分析工作流:使用计算机视觉,为商店的分析提供深入洞察,通过自定义仪表板来显示多项信息,例如商店客流量趋势、带购物篮的顾客数量、过道占用率等。
这些工作流基于NVIDIA Metropolis微服务而构建。NVIDIA Metropolis微服务是一种构建AI应用程序的低代码或无代码方式,为复杂AI工作流的开发提供了构建模块,并使开发出的工作流能够快速扩展到生产就绪型AI应用程序中。
开发者可以轻松地对这些AI工作流进行定制和扩展,包括集成开发者自己的模型。此微服务还能够更轻松地将新产品与旧系统(例如销售点系统)集成。
目前,Radius.ai基于Metropolis微服务构建的全新NVIDIA零售AI工作流能够对产品进行定制化,实现快速扩展,以更好地满足不断增长的客户需求,并持续推动零售领域的创新。
Infosys正在利用NVIDIA新工作流程开发最先进的防损系统, 包含用于零售SKU识别的预训练模型和微服务架构,并快速扩展以涵盖更多商店和产品线,同时实现超越从前的准确性。”
结语
库存管理是一个复杂的实践,但是借助数字化技术可以简化库存管理,提升效率。NVIDIA零售AI工作流让库存管理更加智能,减少零售企业的库存损耗。
好文章,需要你的鼓励
三星与AI搜索引擎Perplexity合作,将其应用引入智能电视。2025年三星电视用户可立即使用,2024和2023年款设备将通过系统更新获得支持。用户可通过打字或语音提问,Perplexity还为用户提供12个月免费Pro订阅。尽管面临版权争议,这一合作仍引发关注。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
苹果M5 MacBook Pro评测显示这是一次相对较小的升级。最大变化是M5芯片,CPU性能比M4提升约9%,多核性能比M4 MacBook Air快19%,GPU性能提升37%。功耗可能有所增加但电池续航保持24小时。评测者认为该产品不适合M4用户升级,但对使用older型号用户仍是强有力选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。