库存发生损失是零售商不可避免发生的事情。全球零售业面临着一个价值1000亿美元的难题——库存“损耗”,即由于盗窃、损坏和错放而造成的货物损失,这会在极大程度上削弱零售商的利润。
根据美国零售联合会(National Retail Federation)与零售防损委员会(Loss Prevention Research Council)合作开展的 《2022 年零售业安全调查》,估计65%的商品损耗是由于盗窃造成的。多家零售商表示,由于食品和其他必需品价格上涨,近期的盗窃事件增加了一倍以上。
成功的库存管理常常是基于速度和准确性。库存的自动化是一个现代化的技术,可以提高仓库的效率。NVIDIA专注于帮助零售商和解决方案提供商创建人工智能解决方案。
为了让开发者能够更轻松且快速地构建并推出能够防止盗窃现象的应用程序,NVIDIA宣布推出三个基于其Metropolis云原生微服务的零售AI工作流。这些工作流可用作防损应用程序的无代码或低代码构建模块。其基于最常被盗产品的图像以及软件进行了预训练,能够接入商店内现有的应用程序,追踪销售点机器以及整个商店内的对象和产品。
开发者可使用全新NVIDIA零售AI工作流,快速构建防损应用程序。该工作流基于云原生微服务而构建,包括针对数百种容易被盗的产品进行预训练的模型,从而提高需求预测的准确性。
通过 NVIDIA AI Enterprise软件套件提供的NVIDIA零售AI工作流包括:
1、零售防损AI工作流:该工作流中的AI模型经过预训练,可以识别数百种最常因盗窃而丢失的产品,包括肉类、酒类和洗衣粉,并能识别各种包装尺寸和形状。借助NVIDIA Omniverse的合成数据生成功能,零售商和独立软件供应商可针对数十万种店内产品,对模型进行定制化和进一步训练。
该工作流基于NVIDIA Research开发的最先进的少样本学习技术,再结合主动学习,可识别并捕获客户和销售人员在结账时扫描的任何新产品,最终提高模型准确性。
2、多摄像头追踪AI工作流:提供多目标、多摄像头(MTMC)功能,使应用开发者能够更轻松地创建系统,以通过商内的多个摄像头来进行对象追踪。该工作流通过摄像头来追踪对象和店员,每个对象拥有一个唯一ID。对象的追踪是基于视觉嵌入或外观,而非个人生物识别信息,以全面保障购物者的隐私。
3、零售商店分析工作流:使用计算机视觉,为商店的分析提供深入洞察,通过自定义仪表板来显示多项信息,例如商店客流量趋势、带购物篮的顾客数量、过道占用率等。
这些工作流基于NVIDIA Metropolis微服务而构建。NVIDIA Metropolis微服务是一种构建AI应用程序的低代码或无代码方式,为复杂AI工作流的开发提供了构建模块,并使开发出的工作流能够快速扩展到生产就绪型AI应用程序中。
开发者可以轻松地对这些AI工作流进行定制和扩展,包括集成开发者自己的模型。此微服务还能够更轻松地将新产品与旧系统(例如销售点系统)集成。
目前,Radius.ai基于Metropolis微服务构建的全新NVIDIA零售AI工作流能够对产品进行定制化,实现快速扩展,以更好地满足不断增长的客户需求,并持续推动零售领域的创新。
Infosys正在利用NVIDIA新工作流程开发最先进的防损系统, 包含用于零售SKU识别的预训练模型和微服务架构,并快速扩展以涵盖更多商店和产品线,同时实现超越从前的准确性。”
结语
库存管理是一个复杂的实践,但是借助数字化技术可以简化库存管理,提升效率。NVIDIA零售AI工作流让库存管理更加智能,减少零售企业的库存损耗。
好文章,需要你的鼓励
宏碁Aspire 14 AI在Costco售价500美元,成为最便宜的Copilot Plus PC。该笔记本搭载英特尔Lunar Lake处理器,拥有现代化配置而非过时组件。配备16GB内存和1TB固态硬盘,电池续航近19小时。虽然设计和显示屏表现一般,但整体性能出色,AI处理能力达到40万亿次操作每秒,是预算有限用户的优质选择。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
博通公司第三季度业绩超预期,每股收益1.69美元,营收159.6亿美元,同比增长22%。公司获得来自新客户的100亿美元定制AI芯片订单,推动股价在盘后交易中上涨超3%。AI相关营收同比增长63%至52亿美元,预计第四季度将超过62亿美元。公司专注为超大规模云基础设施提供商设计定制芯片,已成为英伟达的主要竞争对手之一,年内股价上涨32%,市值超1.4万亿美元。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。