人工智能市场快速增长,算力的需求不断衍生,这对对计算架构的效率和灵活性提出了更高要求。
Imagination Technologies产品总监Rob Fisher接受记者采访时表示,AI领域的高速创新使满足未来需求的硬件和软件变得十分关键。“在软件设计方面,必须具备快速制作新架构原型并测试新架构的能力。在硬件设计方面,必须选择合适的加速粒度以兼顾灵活性和性能。”
Imagination从2015年就开始投入研发AI专用芯片IP核,从最初2NX到3NX到2020 年推出的4NX, 产品在不断演进迭代,性能从0.5Tops的算力开始,到3NX达到12.5Tops,到4NX的多核方案,可上升到100Tops甚至更高。
Imagination为人工智能应用开发了创新型的IP产品,例如PowerVR NNA神经网络加速器系列具有丰富的成员产品,使移动和智能网联(AIoT)设备能够以以前边缘设备无法想象的速度运行神经网络计算。对于诸如安防、自动系统、零售和安全摄像头等细分市场,PowerVR Vision & AI内核可使得边缘设备得到极致的智能化性能,并实现低功耗和低成本。
如今XPU趋势明显,各种异构芯片层出不穷。Rob Fisher说,异构设计可以通过专门的单元更好地处理各项流程,在不需要增加硅面积的情况下提高相同任务的执行效率。而且随着希望设计定制芯片的制造商越来越多,异构性能将变得极其重要。
异构架构在AI设备中兴起的原因是同构架构限制了执行性能,因此需要多种不同的处理单元来满足性能、面积和功耗方面的限制。
Imagination所提供的业界领先的处理器IP解决方案使系统级芯片设计人员能够创建加速AI系统。Imagination通过CPU、GPU和AI处理器IP提供从简单的单处理器加速到复杂异构系统等各种解决方案。
比如IMG Series4多核NNA在运行基于特定的计算图的卷积神经网络(CNN)和其它基于矩阵乘法运算的神经网络(NN)任务时,性能是通用嵌入式处理器的数百倍。
软硬一体赋能芯片
当前AI硬件跟不上软件定义系统创新速度的问题将始终存在。选择合适的硬件加速粒度并在可能的情况下加入可编程性可以在一定程度上缓解这种情况,但却永远无法彻底解决这个问题。
Rob Fisher介绍说,Imagination将软件和硬件放在一起考虑,所提供的综合全面的SDK工具包使开发人员能够成功使用基于Imagination IP的产品,比如使用Neural Compute SDK为神经网络部署具有最高性能和精度的模型并进行跨CPU、GPU和NNA的集成异构编译。
AI框架和智能芯片的适配成果很大程度上影响了智能产业应用从开发到落地的距离。Imagination与百度飞桨开展了广泛的合作,两家公司最近一起发布了一套Model Zoo资源来更好地帮助AI芯片设计人员和开发人员运用百度飞桨产品。
此前,百度飞桨更多的是与AI硬件,也就是芯片设计厂商,进行软硬协同的优化。而这次与芯片设计厂商的上游IP厂商——Imagination合作,可以将收集到的AI应用需求,比如对于算子、模型、算力等各个层面的需求,提供给Imagination,改进IP核,确保最优的性能体现。
除此以外,Imagination和百度飞桨还宣布了一项针对深度学习应用的硬件生态共创计划,发挥两家公司在硬件和软件市场的专长。
结语
AI是一个令人兴奋的领域,AI框架的开发不断演进。硬件和软件是高度相互依赖的,没有正确的硬件,世界上最好的软件也是无用的,反之亦然。
谈及未来布局,Rob Fishert透露,Imagination不仅注重通过扩展来满足计算需求,而且还注重通过提高效率来管理所需的计算量。为了满足不断增长的需求,这两方面都必不可少。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
微软研究院发布突破性多语言AI技术UPDESH,通过"自下而上"数据生成策略,让AI真正理解不同文化背景下的语言表达。该技术基于各语言维基百科内容生成950万个训练数据点,覆盖13种印度语言,显著提升低资源语言AI性能,为构建文化敏感型AI系统提供新路径。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
NVIDIA团队提出RLBFF方法,将AI训练中的复杂评价转化为明确的二元判断标准,解决了传统人类反馈模糊和可验证奖励局限的问题。该方法在多个权威测试中取得突破性成果,其中JudgeBench获得第一名,训练的模型性能媲美知名商业模型但成本仅为其5%,为AI训练领域带来重要方法论创新。