AI计算力正在成为新一轮科技革命和产业变革的重要方法和工具。如今,AI已进入大规模推理时代。
MLPerf是影响力最广的国际AI性能基准评测,其推理性能评测涵盖使用广泛的六大AI场景,比如计算机视觉、自然语言处理、推荐系统、语音识别等,每个场景采用最主流的AI模型作为测试任务,每一任务又分为数据中心和边缘两类场景。
MLPerf凭借其透明性和客观性使用户能够做出明智的购买决定。该基准测试得到了包括亚马逊、Arm、百度、谷歌、哈佛大学、英特尔、Meta、微软、斯坦福大学和多伦多大学在内的广泛支持。
在近日公布的MLPerf AI推理基准测试结果中,NVIDIA协众多产品继续一骑绝尘,其中NVIDIA H100 GPU创造多项世界纪录、A100 GPU在主流性能方面展现领先优势、Jetson AGX Orin在边缘计算方面处于领先地位。
NVIDIA H100 GPU
NVIDIA H100 GPU基于Hopper架构,该芯片与两年前推出的上一代Ampere芯片相比,性能提升4.5倍。
NVIDIA H100 GPU首次亮相MLPerf AI推理基准测试便表现不俗,其提高了本轮测试所有六个神经网络中的单加速器性能标杆,它在单个服务器和离线场景中展现出吞吐量和速度方面的领先优势。
BERT是MLPerf AI模型中规模最大、对性能要求最高的的模型之一。Hopper在流行的用于自然语言处理的BERT模型上表现出色部分归功于其Transformer Engine。
Transformer Engine结合了数据格式和算法,并可通过所使用的Transformer机器学习系统加速硬件性能。
据悉,H100 GPU还将参加未来的MLPerf训练基准测试。
NVIDIA A100 GPU
作为市场主流产品,NVIDIA A100 GPU继续在主流AI推理性能方面展现出全方位领先,
在数据中心和边缘计算类别与场景中,A100 GPU赢得的测试项超过了任何其他提交的结果。A100还在6月的MLPerf训练基准测试中取得了全方位的领先,展现了其在整个AI工作流中的能力。
A100还在6月的MLPerf训练基准测试中取得了全方位的领先,展现了其在整个AI工作流程中的能力。
自2020年7 月在MLPerf上首次亮相以来由于NVIDIA AI软件的不断改进,A100 GPU的性能已经提升了6倍。
NVIDIA AI是唯一能够在数据中心和边缘计算中运行所有 MLPerf 推理工作负载和场景的平台。
NVIDIA Jetson AGX Orin
人工智能(AI)的实效性、物联网设备的采用以及边缘计算的性能都在近期取得了显著的进步,进而释放了边缘AI的潜能。
NVIDIA Jetson AGX Orin模块是NVIDIA Jetson 家族的最新成员并且在其中具有最强大的性能。Orin将NVIDIA Ampere架构GPU和强大的Arm CPU内核集成到一块芯片中。
在边缘计算方面,NVIDIA Orin运行了所有MLPerf基准测试,是所有低功耗系统级芯片中赢得测试最多的芯片。
在上一轮基准测试中,Orin的运行速度和平均能效分别比上一代 Jetson AGX Xavier模块高出5倍和2倍。
在能效方面,Orin边缘AI推理性能提升多达50%。
目前,Orin现已被用在NVIDIA Jetson AGX Orin开发者套件以及机器人和自主系统生产模块,并支持完整的NVIDIA AI 软件堆栈,,包括自动驾驶汽车平台(NVIDIA Hyperion)、医疗设备平台(Clara Holoscan)和机器人平台(Isaac)。
广泛的NVIDIA AI生态系统
MLPerf结果显示,NVIDIA AI得到了业界最广泛的机器学习生态系统的支持。
在这一轮基准测试中,有超过70项提交结果在NVIDIA平台上运行。例如,Microsoft Azure提交了在其云服务上运行NVIDIA AI的结果。
此外,10家系统制造商的19个NVIDIA 认证系统参加了本轮基准测试,包括华硕、戴尔科技、富士通、技嘉、慧与、联想、超微等。
结语
AI加速落地,而不管是训练还是推理,都离不开坚实的算力支撑。NVIDIA以全面的产品组合覆盖从云到数据中心、边缘的AI场景,MLPerf的测试结果展现了NVIDIA产品的实力,赋能企业AI的部署与应用。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。