Nvidia今天推出了新版本的NeMo Megatron AI开发工具,该工具将让软件团队能够更快地训练神经网络。

而且,这次更新有望缩短训练高级自然语言处理模型所需的时间。
2020年,人工智能研究小组OpenAI推出了一种名为GPT-3的复杂自然语言处理模型。该模型可以执行从翻译文本到生成软件代码的各种任务。OpenAI提供的商业云服务让企业能够使用GPT-3的多个专业版本,并创建自己的自定义版本。
Nvidia今天更新的AI开发工具NeMo Megatron现在包含了针对训练GPT-3模型而优化的功能,预计这些功能可以将训练时间缩短多达30%。
Nvidia研究人员在今天发表的一篇博文中表示:“现在可以在24天内使用1024个NVIDIA A100 GPU对1750亿个参数模型进行训练,相比新版本发布之前,获得结果的时间缩短了10天,或大约250000小时的GPU计算时间。”
之所以能够得到加速得益于两项特性,即序列并行性和选择性激活重新计算。据Nvidia称,这两项功能都以不同方式对AI训练进行了加速。
GPT-3等AI模型由所谓层的软件构建块组成,每一层都执行一部分计算,神经网络利用这部分计算资源将数据转化为洞察力。加速AI训练常用的一种方法是配置神经网络层,以便计算可以并行执行,而不是一个接一个地执行,从而节省了时间。
序列并行性是此次NeMo Megatron新增的第一个功能,它使用相同的方法来加快处理速度。根据Nvidia的说法,这项新功能可以对以前只能按顺序一个一个执行的计算进行并行化,从而提高性能,并减少了多次执行相同计算的需要。
选择性激活重新计算是NeMo Megatron的另一个新功能,进一步减少了必须重复的计算次数。该功能通过优化所谓激活的计算操作来实现这一点,AI模型可以利用该功能处理数据。如果激活过程中必须重新计算的话,NeMo Megatron能够比以前更有效地执行此操作,从而缩短AI训练时间。
Nvidia还详细介绍了NeMo Megatron引入的另一项重大改进——超参数优化工具。超参数是软件团队在开发过程中为AI模型定义的配置设置,以优化其性能。使用Nvidia的超参数优化工具,软件团队就可以自动执行任务中涉及的一些手动工作。
开发人员可以指定AI模型的延迟或吞吐量级别,并让新工具自动找到满足要求所需的超参数。据Nvidia称,该功能对于优化AI训练过程特别有用,在一次内部测试中,Nvidia研究人员将GPT-3模型的训练吞吐量提高了30%。
Nvidia研究人员详细说明称:“我们在24小时内达到了175B GPT-3模型的最佳训练配置,与使用完全激活重新计算的常见配置相比,实现了吞吐量20%-30%的加速。”
好文章,需要你的鼓励
AI实验室不再与企业签署昂贵的数据合同,而是通过Mercor平台招募前员工获取行业知识。Mercor为投资银行、咨询公司和律所的前员工与OpenAI、Anthropic等AI实验室搭建桥梁,向行业专家支付高达每小时200美元来训练AI模型。该公司年化经常性收入达5亿美元,估值100亿美元,每天向承包商支付超150万美元。
以色列理工学院和IBM研究院联合开发了FINAL评测基准,用自然语言描述的方式让大语言模型检测文本中的事实错误。研究测试了四个顶级AI模型,发现最好的表现也只有0.67的F1分数。分析显示AI存在两大缺陷:误将遗漏信息判为错误,以及对符合其知识的错误过于宽容。
作为AI热潮的最大受益者,英伟达成为首家市值突破5万亿美元里程碑的上市公司。受特朗普总统表示将与习近平主席讨论该公司Blackwell芯片消息推动,公司股价周三上涨超过5.6%。英伟达CEO黄仁勋预计AI芯片销售额将达5000亿美元,并为美国建设七台新超级计算机。该公司还投资10亿美元于诺基亚,用于AI原生5G和6G网络开发。这一里程碑距离突破4万亿美元仅三个月。
Harmonic团队开发的Aristotle系统在2025年国际数学奥林匹克竞赛中达到金牌水平,成功解决6道题目中的5道。该系统创新性地结合非正式推理与严格的形式化证明,采用蒙特卡洛图搜索和引理分解技术,不仅能解决竞赛问题,还为实际数学研究做出贡献,标志着AI数学推理的重大突破。