Nvidia近日宣布对Nvidia AI Enterprise软件套件进行重大更新,2.1版新增支持企业可用于运行人工智能和机器学习工作负载的关键工具和框架。

去年8月Nvidia推出的Nvidia AI Enterprise是一个端到端的AI软件套件,捆绑了各种人工智能和机器学习工具,并且这些工具已经过优化,可以在Nvidia的GPU和其他硬件上运行。
Nvidia表示,此次发布的亮点之一是对高级数据科学用例的支持,最新版本的Nvidia Rapids是一套开源软件库和API,用于完全在GPU上执行数据科学管道。Nvidia表示,Rapids能够将AI模型训练的时间从几天缩短到几分钟。该套件的最新版本通过添加新模型、技术和数据处理功能,为数据工作流提供了更大的支持。
Nvidia AI Enterprise 2.1还支持最新版本的Nvidia TAO Toolkit,这是一个低代码和无代码框架,可使用自定义数据微调预训练的人工智能和机器学习模型,以产生更准确的计算机视觉、语音和语言理解模型。TAO Toolkit 22.05版本提供了多项新功能,例如REST API集成、预训练权重导入、TensorBoard集成以及新的预训练模型。
为了在混合云和多云环境中更容易使用AI,Nvidia表示将在现有基于裸机和VMwarevSphere部署的OpenShift支持之外,增加对公有云中运行Red Hat OpenShift的支持。此外,AI Enterprise 2.1还支持新的Microsoft Azure NVads A10 v5系列虚拟机。
Nvidia解释说,这些是任何公有云提供的首批Nvidia虚拟GP实例,可以实现更地成本的“部分GPU共享”。例如,客户可以更灵活地采用不同大小的GPU,从1/6个A10 GPU一直到2个完整的A10 GPU。
最后一项更新和Domino Data Lab有关,Domino Data Lab的MLOps平台现在已经通过了AI Enterprise的认证。Nvidia解释说,通过这项认证,Domino Data Lab将有助于降低部署风险,通过AI Enterprise确保MLOps的可靠性和高性能。Nvidia表示,企业使用这两个平台,可以受益于工作负载编排、自助式基础设施和增强协作,在虚拟化服务器和主流加速服务器上进行具有高成本效益的扩展。
对于有兴趣试用最新版AI Enterprise的企业,Nvidia表示将提供一些新的LaunchPad服务供他们使用。LaunchPad服务可以在私有加速计算环境中提供对AI Enterprise的即时、短期访问,环境中有动手实验室,客户可以使用这些实验室来试用AI Enterprise平台。新实验室环境包括在VMware vSphere with Tanzu上进行图像分类的多节点训练,以及使用Nvidia Triton部署欺诈检测XGBoost模型的机会等等。
好文章,需要你的鼓励
IBM在量子开发者大会上发布两款新型量子处理器。Quantum Nighthawk配备120个量子比特和218个新一代可调耦合器,比前代产品增加20%耦合器,可执行复杂度提升30%的电路。Quantum Loon是实验性处理器,展示了实现极低错误率和高效错误恢复的所有组件。IBM计划2026年底确认首批量子优势案例,并于2029年交付大规模容错量子计算平台。
斯坦福大学等机构联合开发的CIFT系统首次解决了机器人"近视眼"问题,通过精确控制真实数据和合成数据的混合比例,让机器人在陌生环境中的表现提升54%以上。该系统包含多视角视频增强引擎MVAug和数据组合优化策略,能够预测数据失效的"去相干点",确保机器人学习真正重要的任务特征而非环境表象,为实用化通用机器人奠定了重要基础。
VDURA数据平台第12版本通过扩展元数据计算、添加系统级快照功能和支持叠瓦磁记录硬盘来降低每TB成本。新版本引入弹性元数据引擎,可动态扩展元数据节点,将元数据操作性能提升最多20倍。快照功能支持即时的节省空间的数据集时点副本。SMR硬盘支持通过智能写入放置引擎,在不影响吞吐量的情况下每机架增加25-30%容量。
香港中文大学研究团队开发的Search-R3系统成功解决了大语言模型推理与搜索分离的问题,通过两阶段训练让AI在深度思考过程中直接生成搜索向量。该系统在多个领域测试中显著超越现有方法,特别是启用推理后性能提升明显,为AI系统设计提供了推理与搜索统一的新范式,展现了从专门化向通用化发展的重要方向。