如今,量子计算正在跳出实验室进入现实应用的世界,为很多传统计算问题解决提供了颠覆性思路。

量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式,通常与经典计算相比较。从原理看,量子计算可以拥有比经典计算更快的计算速度,这种差距有可能高达百万亿倍。
近日,NVIDIA发布了量子优化设备架构(QODA),可以帮助加速人工智能(AI)、高性能计算(HPC)、医疗、金融和其他学科的量子研发突破。

类似CUDA,QODA提供了开放的、统一的环境,通过创建相干的混合量子经典编程模型,使量子计算更容易使用,适用于当今一些最强大的计算机和量子处理器。
目前,结合经典计算和量子计算的混合解决方案可能为科学研究带来突破。所谓混合量子计算,就是量子计算机和经典计算机协同工作,充分发挥经典计算(比如CPU和GPU)在传统作业中的优势,如电路优化、校正和纠错,以及系统级量子处理器(即QPU)作为新型加速器的优势。
NVIDIA开发的混合量子-经典功能提供在综合环境中高效编程调用量子和经典计算资源的方法,使HPC开发者能够加速其现有应用。化学、药物研发、材料科学等领域的近期应用现在可以与量子计算无缝集成。
借助QODA,HPC和AI领域的专家可以轻松将量子计算添加至现有应用中——借助现今的量子处理器以及模拟的未来量子计算机, 这些模拟的量子计算机采用NVIDIA DGX系统和可提供大量NVIDIA GPU的科学超算中心和公有云。
QODA将通过为开发者提供强大而高效的编程模型来彻底改变量子计算。现在量子计算研究组织已经使用 NVIDIAI GPU和高度专业化的NVIDIA软件NVIDIA cuQuantum来开发各自的量子线路。借助NVIDIA QODA,开发者就能构建完整的量子应用程序,这些量子应用程序可以通过NVIDIA cuQuantum在GPU加速的超级计算机上进行模拟。

近期,AWS在Braket服务中提供cuQuantum,并展示了cuQuantum在量子机器学习工作负载上实现了900倍的加速,同时减少3.5倍的成本。
产业协同是量子计算实现突破的关键。据悉,接下来NVIDIA与量子硬件供应商IQM quantum Computers、Pasqal、Quantum, Quantum Brilliance和Xanadu,软件供应商QC Ware和Zapata Computing, 以及超级计算中心德国尤里希研究中心、劳伦斯伯克利国家实验室和橡树岭国家实验室开展QODA方面的合作。
结语
为了更好地推动量子计算的发展,相关的软硬件设备需要不断突破,特别是解决经典计算和量子计算的统一编程问题。NVIDIA QODA填补了经典计算和量子计算之间的鸿沟,让相关应用开发更加容易,加速量子应用的落地。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
哈佛、MIT联合研究揭示人类语言理解的神经机制,发现大脑通过"信息出口"将语言从核心系统传递至专业脑区实现深度理解。研究提出浅层与深层理解的区别,为人工智能发展提供重要启示,表明真正智能需要多系统协作而非单一优化。该发现可能改变我们对语言认知的理解。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
腾讯混元等团队开发出革命性的AI视频生成自我评判系统PAVRM和训练方法PRFL,让AI能在创作过程中实时评估和改进视频质量,无需等到完成才反馈。该技术使视频动态表现提升56%,人体结构准确性提升21.5%,训练效率提升1.4倍,为AI视频生成质量带来质的飞跃。