MLPerf是国际权威的AI性能基准评测,每年各有两次AI推理和AI训练测试,以对迅速增长的AI计算需求与性能进行及时的跟踪测评。
在最新的MLPerf训练2.0版本中,NVIDIA与16家合作伙伴提交了本轮结果,占了所有参赛生态伙伴的90%,并且继续提供了最佳的整体AI训练性能和提交了最多的测试项。
出色成绩来自持续创新
在连续第四次MLPerf训练提交结果中,基于NVIDIA Ampere架构的NVIDIA A100 Tensor Core GPU依然表现出色。NVIDIA A100还保持了单芯片性能上的领导地位,在八项测试中的六项测试中呈现了最快的速度。
同时,Selene在八项大规模工作负载测试的四项中获得“最快训练时间”。Selene是NVIDIA内部的一台AI超级计算机,它基于模块化的NVIDIA DGX SuperPOD,并由NVIDIA A100 GPU、软件堆栈和NVIDIA InfiniBand网络驱动。
从首次基于A100提交MLPerf基准测试以来的两年时间里,NVIDIA AI平台继续在MLPerf 2.0中提供最高的性能,仍是唯一能够提交所有基准测试的平台。
得益于跨GPU、软件和大规模改进的全栈式创新,NVIDIA AI平台在3年半时间里,在基准测试中实现了23倍的性能提升。
比如在提交结果中大量使用的CUDA Graphs,该软件可以最大限度地减少跨多个加速器上运行作业的启动开销。NVIDIA Magnum IO和SHARP将部分AI功能卸载到网络中,以获得更好的性能。
据了解,NVIDIA所使用的所有软件均可从MLPerf资源库中获取。NVIDIA还不断地将这些优化集成到NVIDIA的GPU应用软件中心——NGC上提供的容器中,并通过NVIDIA AI Enterprise提供完全由NVIDIA支持,并经过优化的软件。
通吃各种AI模型让AI快速落地
MLPerf训练基准测试代表了流行的AI用例,包括语音识别、自然语言处理、推荐系统、目标检测、图像分类等。
NVIDIA AI仍是唯一能够运行MLPerf行业基准测试中所有测试的平台,A100 GPU自发布以来连续两年一直保持着获胜次数最多的纪录。
NVIDIA AI平台覆盖了其中的所有八项基准测试,突显了其领先的通用性,保护用户已有的AI平台投资。
对于用户而言,人工智能应用需要多种类型的AI模型按顺序工作,用户需要能够快速且灵活地设计、训练、部署和优化这些模型。NVIDIA AI平台的通用性让其在各种AI模型中表现出色,可以帮助用户构建相关应用。
通常AI研究人员需要快速测试新的想法,这需要通用性来训练任何模型,以及大规模训练模型所能提供的速度。
凭借NVIDIA AI,客户可以在整个AI流程中使用相同的基础设施,重新利用它来适配数据准备、训练和推理之间的不同需求,这极大地提高了利用率,实现了非常高的投资回报率。
NVIDIA AI兼容并适用于每个模型、可以扩展到任何规模,并加速从数据准备到训练再到推理的端到端AI流程,能够实现最高的单位成本生产力。
今天的结果再次证明了NVIDIA在迄今为止所有MLPerf训练、推理和HPC评测中所展示的丰富而深厚的AI专业性。
结语
MLPerf行业基准测试是企业进行AI采购的重要参考,而NVIDIA AI平台的上佳表现将会增强已有用户的信心,并吸引更多用户部署。
我们看到这次参与测试还是基于 NVIDIA Ampere架构的A100,要知道NVIDIA于3月发布了NVIDIA Hopper架构,这样在未来的MLPerf基准测评中NVIDIA的表现将会很值得期待。
好文章,需要你的鼓励
这项研究由德累斯顿工业大学等机构的研究团队完成,旨在解决主动学习未被广泛应用的问题。研究者构建了包含460万种超参数组合的实验网格,系统分析了各参数对主动学习性能的影响。研究发现,不同策略实现间存在显著差异,基于边缘的不确定性策略整体表现最佳,随机选择约4000个超参数组合即可获得可靠结果。这些发现为设计可重现、可信赖的主动学习实验提供了明确指导,有助于降低入门门槛,促进技术在实际应用中的普及。
这项由英国爱丁堡大学和上海人工智能实验室研究者共同完成的工作提出了LongBioBench,一种用于评估长文本语言模型的新型基准测试框架。通过使用人工生成的虚构人物传记作为测试环境,该框架在保持可控性的同时,提供了更真实的评估场景。研究对18个长文本模型的测试表明,即使最先进的模型在检索、推理和可信任性方面仍存在显著挑战,特别是上下文长度增加时。研究还揭示了现有合成基准测试的设计缺陷和长上下文预训练的局限性,为未来模型开发提供了重要指导。
SuperWriter是一项来自新加坡科技设计大学和清华大学的突破性研究,通过模仿人类"先思考后写作"的过程,彻底改良了AI长文生成能力。该研究团队开发的框架包含三个关键阶段:规划、写作和修改,使AI能像专业作家一样进行结构化思考。实验结果表明,经过训练的SuperWriter-LM模型不仅超越同等规模的所有AI模型,甚至在某些领域表现优于规模更大的顶级模型,为AI辅助写作开创了新的可能性。
香港大学与阿里巴巴达摩院合作开发的LayerFlow是一种突破性的层级视频生成技术,能同时生成透明前景、完整背景和混合场景视频。该技术通过创新的框架设计将不同视频层级作为子片段连接,并引入层级嵌入使模型区分各层级。面对高质量训练数据稀缺的挑战,研究团队设计了三阶段训练策略,结合Motion LoRA和Content LoRA,实现了图像和视频数据的联合训练。LayerFlow不仅支持多层视频生成,还能实现视频分解和条件层生成,为视频创作领域带来革命性变革。