AI模型从开发到部署应用,是一个技术门槛高、流程复杂的过程。AI模型的全生命周期包括问题定义、数据接入、数据处理、特征工程、模型训练、模型评估及发布、模型管理等环节,其中特征工程、模型选择、模型评估等环节高度依赖AI专家和数据科学家的经验和算法能力。
而低代码低代码(Low Code)是一种可视化的应用开发方法,基于图形化拖拽、参数化配置等更为高效的方式,用较少的代码、以较快的速度来交付应用程序,将程序员不想开发的代码做到自动化,称之为低代码。
近日,NVIDIA发布了TAO(NVIDIA训练、适应和优化,TAO)工具套件低代码版本,其能够简化并加速语音和视觉AI应用的AI模型创建。

最新发布的TAO工具套件包括全新和更新的视觉及语音预训练模型。ONNX模型权重导入、REST API和TensorBoard集成等新功能,能够快速追踪模型创建流程,提高开发者的生产力。
简化AI模型开发
NVIDIA TAO(训练、适应和优化)是一个可以简化和加速企业AI应用和服务创建的AI模型自适应平台。通过基于用户界面的指导性工作流程,让用户可以使用自定义数据对预训练模型进行微调,无需掌握大量训练运行和深度AI专业知识,在数小时内(原本需要数月)产生高度精确的计算机视觉、语音和语言理解模型。
TAO使开发者能够轻松运用迁移学习创建自定义生产级模型,这些模型专门针对缺陷检测、语言翻译、交通管理等各种行业专属用例进行了优化。使用TAO开发模型的用户能够用更少的数据优化模型,进而缩短部署时间。
NVIDIA TAO工具套件低代码版本可以简化AI模型开发,这得益于其全新的功能特性:
最新版本中新增的一些预训练模型可以:
结语
当前越来越多的企业将AI应用到业务中,但过程中也受到专业技能缺乏、数据不足以及开发周期较长等问题的困扰。NVIDIA TAO简化了AI工作流程,搭建了奔向企业AI的快车道。
好文章,需要你的鼓励
Instagram负责人莫塞里在接受采访时透露,平台正考虑引入长视频内容功能,尽管此前一直专注于短视频。他承认为了吸引优质内容,Instagram可能需要支持长视频格式。此外,Meta最近推出了"您的算法"功能,旨在让用户更好地控制信息流内容。莫塞里承诺未来将提供更多工具,让用户主动塑造个性化内容,但完整实现可能需要2-4年时间。
香港大学联合Adobe研究院提出PS-VAE技术,成功解决了AI无法同时具备图像理解和生成能力的难题。通过创新的两阶段训练策略,让AI既能准确理解图片语义,又能生成高质量图像,在图像编辑任务上性能提升近4倍,为统一视觉AI系统开辟新路径,在数字创作、教育、电商等领域具有广阔应用前景。
在信息爆炸的时代,AI实验室的研究员们常常需要面对海量的论文、专利文件、论坛发言等各种渠道的信息。传统的查找方式不仅费时费力,还容易遗漏关键内容。那么,有没有一种方式能让AI真正代替人工,完成从找资料到写出稿的全流程工作?
华中科技大学与马里兰大学研究团队开发出Sage评估框架,首次无需人工标注即可评估AI评判员可靠性。研究发现即使最先进的AI模型在评判任务中也存在严重不一致问题,近四分之一困难情况下无法保持稳定偏好。团队提出明确评判标准和专门微调等改进方法,为构建更可靠AI评估体系提供重要工具。