近日,第五届UG2+挑战赛成绩新鲜出炉。天翼云研发三部AI算法团队获得第五名,这是天翼云团队首次在国际AI顶会比赛中崭露锋芒,也意味着天翼云的AI技术实力正在向着世界迈进。

UG2+挑战赛由 CVPR主办,IEEE国际计算机视觉与模式识别会议(CVPR) 是全球计算机视觉三大顶会之一。本届UG2+大赛围绕雾霾条件目标检测、黑暗场景视频行为识别、大气湍流失真图像模糊缓解三大方向,面向全世界进行赛队招募,共吸引了海内外上百支优秀队伍参赛,包括NVIDIA、新加坡南洋理工大学、好未来AI Lab等人工智能企业、高等院校及科研机构。
此次天翼云研发三部AI算法团队首次参赛,在未知的黑暗视频测试集上的top1分类准确率达到87.43%,位列第五。
该赛道中,主办方提供了来自HMDB51、UCF101、Kinetics-600和 Moments in Time数据集的精选子集,其中包括11个类别标签(喝酒、跳跃、捡、倒、推、跑、坐、站、转、走和挥手)共 2625 个清晰视频,以及另一组包括11个相同类别但无标签的黑暗场景的视频共3088 个。参赛队伍需使用人工智能技术将黑暗场景的目标视频分类到11个类别中,评价指标是测试集上的Top1分类准确率。竞赛难度巨大。

为了提升黑暗场景下的行为识别模型的鲁棒性,天翼云研发三部AI算法团队使用图像增强方法对黑暗视频进行预处理,让图像从曝光强度的线性响应变得更接近人眼感受的响应,提升暗部细节。在对比现有先进视频分类算法(R3D、X3D、Timesformer、Slowfast、UniFormer、i3D等)后,天翼云研发三部AI算法团队决定利用CycleGAN做风格迁移,生成黑暗视频来进行数据增强,同时使用半监督算法,利用清晰视频和黑暗视频,使用自适应损失和标记数据的交叉熵分类损失进行模型优化。经过两个月的算法与模型优化,天翼云研发三部AI算法团队将黑暗场景下图像识别率提升了4倍,最终在未知的黑暗视频测试集上的top1分类准确率达到87.43%,夺得了第五名。
据介绍,该视频分析技术有较高的应用价值,可应用在夜间安全监控场景中,适用于大雨、大雾、雾霾等恶劣天气下的图像处理与视频分析。
通常夜间安全摄像头在光线不足的条件下发挥作用,需要捕捉分析即使是肉眼也很难识别捕捉到的动作。虽然可以使用红外成像传感器等其他设备,但成本较高,不利于大规模部署。因此,探索对黑暗具有鲁棒性的视频分析技术,从黑暗视频中提取有效的动作特征,对做好安全监控工作意义重大。
一直以来,天翼云深耕视频智能分析和图像处理相关技术,自研算法通过诸葛AI平台产品赋能千行百业,小到行程码识别,大到智慧城市。目前,天翼云大数据与AI研发团队在起草制定人工智能相关行业标准的同时,已完成百余项核心算法的自主研发。接下来,天翼云将坚持科技创新,发挥云上数智的优势,努力打造央企原始创新策源地。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。