近日,第五届UG2+挑战赛成绩新鲜出炉。天翼云研发三部AI算法团队获得第五名,这是天翼云团队首次在国际AI顶会比赛中崭露锋芒,也意味着天翼云的AI技术实力正在向着世界迈进。
UG2+挑战赛由 CVPR主办,IEEE国际计算机视觉与模式识别会议(CVPR) 是全球计算机视觉三大顶会之一。本届UG2+大赛围绕雾霾条件目标检测、黑暗场景视频行为识别、大气湍流失真图像模糊缓解三大方向,面向全世界进行赛队招募,共吸引了海内外上百支优秀队伍参赛,包括NVIDIA、新加坡南洋理工大学、好未来AI Lab等人工智能企业、高等院校及科研机构。
此次天翼云研发三部AI算法团队首次参赛,在未知的黑暗视频测试集上的top1分类准确率达到87.43%,位列第五。
该赛道中,主办方提供了来自HMDB51、UCF101、Kinetics-600和 Moments in Time数据集的精选子集,其中包括11个类别标签(喝酒、跳跃、捡、倒、推、跑、坐、站、转、走和挥手)共 2625 个清晰视频,以及另一组包括11个相同类别但无标签的黑暗场景的视频共3088 个。参赛队伍需使用人工智能技术将黑暗场景的目标视频分类到11个类别中,评价指标是测试集上的Top1分类准确率。竞赛难度巨大。
为了提升黑暗场景下的行为识别模型的鲁棒性,天翼云研发三部AI算法团队使用图像增强方法对黑暗视频进行预处理,让图像从曝光强度的线性响应变得更接近人眼感受的响应,提升暗部细节。在对比现有先进视频分类算法(R3D、X3D、Timesformer、Slowfast、UniFormer、i3D等)后,天翼云研发三部AI算法团队决定利用CycleGAN做风格迁移,生成黑暗视频来进行数据增强,同时使用半监督算法,利用清晰视频和黑暗视频,使用自适应损失和标记数据的交叉熵分类损失进行模型优化。经过两个月的算法与模型优化,天翼云研发三部AI算法团队将黑暗场景下图像识别率提升了4倍,最终在未知的黑暗视频测试集上的top1分类准确率达到87.43%,夺得了第五名。
据介绍,该视频分析技术有较高的应用价值,可应用在夜间安全监控场景中,适用于大雨、大雾、雾霾等恶劣天气下的图像处理与视频分析。
通常夜间安全摄像头在光线不足的条件下发挥作用,需要捕捉分析即使是肉眼也很难识别捕捉到的动作。虽然可以使用红外成像传感器等其他设备,但成本较高,不利于大规模部署。因此,探索对黑暗具有鲁棒性的视频分析技术,从黑暗视频中提取有效的动作特征,对做好安全监控工作意义重大。
一直以来,天翼云深耕视频智能分析和图像处理相关技术,自研算法通过诸葛AI平台产品赋能千行百业,小到行程码识别,大到智慧城市。目前,天翼云大数据与AI研发团队在起草制定人工智能相关行业标准的同时,已完成百余项核心算法的自主研发。接下来,天翼云将坚持科技创新,发挥云上数智的优势,努力打造央企原始创新策源地。
好文章,需要你的鼓励
Instabase 公司完成 1 亿美元 D 轮融资,估值 12.4 亿美元。该公司提供非结构化数据处理平台,可从多种文件中提取信息并标准化。新资金将用于增强数据提取、分析和搜索功能,以满足企业 AI 需求。
人工智能在建筑设计领域正展现出惊人潜力。从生成令人赏心悦目的建筑效果图,到创造无限游戏世界,AI 正逐步改变设计流程。尽管人类仍是核心创作者,但 AI 辅助工具正迅速普及,未来可能会大幅提升设计效率和质量。这一趋势引发了对 AI 取代人类建筑师的担忧,也带来了硬件革命和地缘政治影响。
研究显示,高收入公司的CEO正将人工智能置于业务战略的核心地位。欧美企业声称已具备AI项目的基础条件。专家建议避免过度乐观,关注投资回报,构建稳健的数据基础,并优先考虑循序渐进的推广策略。研究还发现,最成功的公司往往是那些高层领导有意识地不直接参与AI战略制定的公司。
微软研究团队开发了名为 MatterGen 的扩散模型系统,用于高效发现新材料。该系统可从大量候选材料中筛选出具有特定性质的新材料,比传统方法快速高效得多。这项技术有望加速电池等关键领域的创新,推动材料科学的发展。