Nvidia今天推出了两款用于高性能计算和人工智能工作负载的芯片新品。
本周Nvidia在德国汉堡举行的ISC高性能计算大会上宣布推出了这两款芯片——Nvidia Grace CPU Superchip和Nvidia Grace Hopper Superchip,旨在为新一代的百亿亿级计算机服务器提供动力。
Nvidia表示,Nvidia Grace CPU超级芯片基于是Nvidia首款基于Arm的CPU(代号也是Grace)。该芯片配置了两个基于Arm的CPU提供支持,并通过高带宽、低延迟的Nvidia NVLink-C2C进行连接。Nvidia称这是一个“突破性的设计”,其中包含了多达144个Arm Neoverse内核,采用了Scalable Vector Extension和性能达每秒1 TB的内存系统。
Nvidia Grace CPU Superchip与PCIe Gen5协议接口,可以轻松链接到Nvidia最新的GPU,用于人工智能和机器学习工作负载,也可以与Nvidia BlueField-3 DPU连接,用于高性能计算应用。
至于Nvidia Grace Hopper超级芯片,这是一个更强大的系统,结合了Nvidia Hopper GPU与Nvidia Grace CPU,是一个通过NVLink-C2C连接的集成模块,用于高性能计算和大规模人工智能工作负载。
Nvidia表示,这两个新系统都运行Nvidia的人工智能和高性能计算软件的完整产品组合,支持“全栈的、集成的计算”。
这两个系统主要针对OEM厂商,特别是计算机服务器制造商,而且这些客户会立即采用这些芯片,首批搭载Grace超级芯片的系统将于今年晚些时候推出,包括戴尔、HPE、联想、浪潮、技嘉、超微和Atos。Nvidia承诺,将会给这些OEM厂商带来更高性能、更大内存带宽、更高能效等诸多优势。
而且Nvidia正在试图让几家知名客户来为自己背书,其中包括美国国防部的洛斯阿拉莫斯国家实验室。
洛斯阿拉莫斯实验室公布了一套名为Venado的新型高性能计算系统,号称是使用HPE Cray EX超级计算机构建的“异构系统”,将混合使用Grace CPU超级芯片节点和Grace Hopper超级芯片。一旦系统开始运行,预计性能将超过10 exaflops,并得到广泛应用。
洛斯阿拉莫斯实验室模拟和计算副主任Irene Qualters表示:“Venado系统为LANL的研究人员带来了Nvidia Grace Hopper的高性能水平,将继续致力于推动科学突破的界限。Nvidia的加速计算平台和广阔的生态系统正在消除性能上的障碍,使该实验室能够有新的发现,造福国家和整个社会。”
Nvidia的另一个主要客户是瑞士国家计算中心,该中心表示,他们的新系统也将由HPE Cray EX超级计算机构建。该中心表示,这套计划中的系统将配置多个Grace CPU超级芯片,将作为一种面向通用研究的先进平台提供服务。
Nvidia公司超大规模和高性能计算副总裁Ian Buck表示,超级计算领域正在进入百亿亿次人工智能的新时代,这将让研究人员能够应对以前那些遥不可及的挑战。
他说:“在气候科学、能源研究、太空探索、数字生物学、量子计算等领域,Nvidia Grace CPU超级芯片和Grace Hopper超级芯片构成了世界上最先进的高性能计算和人工智能平台的基础。”
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。