Nvidia近日与Ayar Labs签署了一项技术合作协议。Ayar Labs是一家开发光学芯片的初创公司,其芯片有望提高数据中心基础设施的速度和效率。
就该消息公布的几周之前,Nvidia刚刚为这家初创公司提供了1.3亿美元的融资资金,其他几家科技巨头也加入了这轮融资,包括英特尔的投资部门Intel Capital。自创立以来,Ayar Labs累计融资了1.947亿美元。
Nvidia将与Ayar Labs合作,开发基于Ayar Labs光学芯片技术的人工智能基础设施新产品,特别是,两家公司希望打造“由高带宽、低延迟和超低功耗光学互连接入技术实现的横向扩展架构”。
对很多企业AI使用场景来说,将芯片连接在一起是必不可少的。在互连技术的帮助下,企业客户可以将多个图形卡相互连接,并使用它们来运行AI软件,速度比使用单个处理器更快。
互连速度直接影响驱动AI硬件的性能。在AI环境中,数据在芯片之间传输的速度越快,执行的处理速度也就越快。
Ayar Labs开发了一种新的互连技术,速度要比现有产品快得多。通常,互连技术是以电的形式在互相连接的芯片之间传输数据,而Ayar Labs的技术是以光的形式传输数据,从而提高性能。
Ayar Labs在一款名为TeraPHY的模块中提供了这种互连技术,这种模块可以内置到图形卡等处理器中。据Ayar Labs称,单个TeraPHY模块每秒能够传输2 TB的数据,而且这种技术提供的带宽要比传统互连技术高出1000倍,功耗仅为传统互连的十分之一。
Nvidia公司数据中心产品首席平台架构师Rob Ober表示:“在过去十年中,Nvidia加速计算在AI领域实现了百万倍的加速。下一个百万级的飞跃将需要借助新的先进技术,如光学I/O,以满足未来人工智能和机器学习工作负载和系统架构对带宽、功率和规模的要求。”
两家厂商不仅计划在产品开发方面展开合作,还计划加速光学芯片技术的普及。人工智能基础设施市场只是Nvidia应用光学互连技术的几个潜在领域之一。Ayar Labs表示,TeraPHY模块有助于提高云数据中心和超级计算环境的性能,两者都是Nvidia关注的主要领域。
好文章,需要你的鼓励
谷歌深度思维团队开发出名为MolGen的AI系统,能够像经验丰富的化学家一样自主设计全新药物分子。该系统通过学习1000万种化合物数据,在阿尔茨海默病等疾病的药物设计中表现出色,实际合成测试成功率达90%,远超传统方法。这项技术有望将药物研发周期从10-15年缩短至5-8年,成本降低一半,为患者更快获得新药治疗带来希望。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
哈佛医学院和微软公司合作开发了一个能够"听声识病"的AI系统,仅通过分析语音就能预测健康状况,准确率高达92%。该系统基于深度学习技术,能够捕捉声音中与疾病相关的微妙变化,并具备跨语言诊断能力。研究团队已开发出智能手机应用原型,用户只需完成简单语音任务即可获得健康评估,为个性化健康管理开辟了新途径。