Nvidia近日与Ayar Labs签署了一项技术合作协议。Ayar Labs是一家开发光学芯片的初创公司,其芯片有望提高数据中心基础设施的速度和效率。

就该消息公布的几周之前,Nvidia刚刚为这家初创公司提供了1.3亿美元的融资资金,其他几家科技巨头也加入了这轮融资,包括英特尔的投资部门Intel Capital。自创立以来,Ayar Labs累计融资了1.947亿美元。
Nvidia将与Ayar Labs合作,开发基于Ayar Labs光学芯片技术的人工智能基础设施新产品,特别是,两家公司希望打造“由高带宽、低延迟和超低功耗光学互连接入技术实现的横向扩展架构”。
对很多企业AI使用场景来说,将芯片连接在一起是必不可少的。在互连技术的帮助下,企业客户可以将多个图形卡相互连接,并使用它们来运行AI软件,速度比使用单个处理器更快。
互连速度直接影响驱动AI硬件的性能。在AI环境中,数据在芯片之间传输的速度越快,执行的处理速度也就越快。
Ayar Labs开发了一种新的互连技术,速度要比现有产品快得多。通常,互连技术是以电的形式在互相连接的芯片之间传输数据,而Ayar Labs的技术是以光的形式传输数据,从而提高性能。
Ayar Labs在一款名为TeraPHY的模块中提供了这种互连技术,这种模块可以内置到图形卡等处理器中。据Ayar Labs称,单个TeraPHY模块每秒能够传输2 TB的数据,而且这种技术提供的带宽要比传统互连技术高出1000倍,功耗仅为传统互连的十分之一。
Nvidia公司数据中心产品首席平台架构师Rob Ober表示:“在过去十年中,Nvidia加速计算在AI领域实现了百万倍的加速。下一个百万级的飞跃将需要借助新的先进技术,如光学I/O,以满足未来人工智能和机器学习工作负载和系统架构对带宽、功率和规模的要求。”
两家厂商不仅计划在产品开发方面展开合作,还计划加速光学芯片技术的普及。人工智能基础设施市场只是Nvidia应用光学互连技术的几个潜在领域之一。Ayar Labs表示,TeraPHY模块有助于提高云数据中心和超级计算环境的性能,两者都是Nvidia关注的主要领域。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。