美国俄亥俄州超级计算机中心(OSC)正在建立造一个用于人工智能应用的新高性能计算集群,该集群基于戴尔硬件,配备了AMD Epyc处理器和Nvidia GPU加速器。
该新高性能计算集群名为Ascend,将在今年晚些时候推出,主打支持OSC的人工智能、机器学习、大数据和数据分析工作,OSC是坊间知名的公私合作和工业高性能计算机构。据OSC称,Ascend将和旗下现有的Pitzer 和 Owens计算集群合在一起,整个设施的人工智能、建模和模拟能力可提高两倍。
据OSC中心副主任Doug Johnson表示,在过去几年里,OSC对GPU资源的需求不断增长,因此Ascend将是OSC的第一个完全致力于提供基于GPU密集处理能力的计算集群。
他表示,“建立一个专注于快速分析非常大的数据集的集群,进而提供我们目前的系统上不能运行的人工智能机器学习应用以及一些需要最快GPU的模拟,OSC将可以更好地满足这些客户的需求,同时确保迅速处理我们现有集群Pitzer 和 Owens的请求。”
新集群的硬件包括24个戴尔PowerEdge XE8545服务器节点,配有4U机架式系统及双AMD Eypc第三代处理器。每个节点将配置四个Nvidia A100 80GB GPU,并与Nvidia Quantum HDR 200Gbps网络互连。
Ascend网站目前参与了两个美国国家科学基金会资助的项目,两个项目旨在推进人工智能工作。第一个项目是智能网络基础设施与环境计算学习人工智能研究所(ICICLE),该研究所由俄亥俄州立大学领头,旨在开发下一代网络基础设施,重点放在人工智能的普及。
第二个项目是将于今年举行的“网络基础设施(CI)专业人员AI训练营”,该训练营的焦点是在全国范围内的诸如OSC一类的研究计算设施培养其工作人员的人工智能技能。
OSC的研究软件应用主管Karen Tomko表示,Ascend将为ICICLE研究团队提供探索和开发新的人工智能技术方面最先进的资源,同时也令OSC自己的员工有机会增加对人工智能工作负载的了解以及支持该增长领域的最佳实践。
Ascend将可以通过OSC的OnDemand门户网站访问,而该网站的客户服务团队将评估在该集群上运行项目的请求。OSC表示将在今年夏天给出Ascend推出日期和可用性的更详细时间表。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。