英特尔公司正在收购一家名为Granulate Cloud Solutions的初创公司,该公司可利用人工智能技术帮助企业加速应用和降低基础设施成本。
英特尔今天早上宣布了这笔交易,但没有披露财务条款,不过根据TechCrunch援引多个消息来源称,此次的收购价格约为6.5亿美元。
随着时间的推移,支持某个应用所需的数据中心基础设施规模是会发生改变的。例如对于电商应用来说,对基础设施的需求量可能会随着购物者数量的变化而发生变化,而确定需要把多少硬件资源分配给工作负载,以及何时分配,这些很大程度上都是由软件自动执行的。
尽管分配基础设施资源的过程是自动化的,但在某些情况下,这也可能是效率低下的。在数据中心内,经常会出现多个应用同时请求硬件资源的情况。有的时候,一个应用的硬件请求可能会影响其他应用,即使理论上所有这些请求都是可以同时执行的。
总部位于以色列特拉维夫的Granulate公司,开发了一个软件平台,该平台消除了分配硬件资源给应用过程中很多不必要的延迟。因为这种延迟经常发生,所以减少延迟可以显着加快处理速度。根据Granulate称,该平台可以将应用处理某些请求的时间缩短多达40%。
除了改善用户体验之外,加速应用还有其他好处,例如提高工作负载的性能,使其能够用更少的基础设施执行计算任务,其结果就是使用Granulate的平台让企业可以将云基础设施成本降低多达60%。
一年前,Granular与英特尔合作开展了一项计划,旨在利用Granulate的软件平台优化基于英特尔至强处理器的服务器。英特尔表示,收购完成之后,将“迅速扩展Granulate的优化软件,覆盖英特尔整个数据中心产品组合”。
“Granulate尖端的自主优化软件可以应用于生产型工作负载,无需客户更改代码,就可以为每个云和数据中心客户带来优化的硬件和软件价值,”英特尔公司执行副总裁、数据中心和人工智能事业部总经理Sandra Rivera这样表示。
英特尔预计将在该季度完成此次收购,届时Granulate的120名员工将加入英特尔数据中心和人工智能事业群。
此次收购将增强英特尔在人工智能市场的能力,而该市场已经成为英特尔近年来的一大重点。Granulate的平台依靠机器学习算法来提高数据中心基础设施效率,这些算法可以评估数据中心应用访问硬件资源的情况,然后对这些信息进行分析,以找到提高性能的方法。
英特尔对人工智能的投资也在从软件扩展到硬件方面,英特尔的很多处理器(包括一些消费类芯片)都配备了针对机器学习任务进行优化的电路,此外还提供越来越多专为运行AI工作负载而开发的芯片。
好文章,需要你的鼓励
Hugging Face推出开源工具Yourbench,允许企业创建自定义基准来评估AI模型在其内部数据上的表现。这一工具通过复制大规模多任务语言理解基准的子集,以极低成本实现了对模型性能的精确评估。Yourbench的出现为企业提供了更贴合实际需求的AI模型评估方法,有望改善模型评估的方式。
Cognition AI 推出 Devin 2.0,这是其 AI 驱动的软件开发平台的更新版本。新版本引入了多项功能,旨在提升开发者与自主代理之间的协作效率。最引人注目的是,Devin 2.0 的起价从每月 500 美元大幅下调至 20 美元,使其更易于普及。新功能包括并行 Devin、交互式规划、代码库搜索等,有望提升开发效率并增强用户控制。
安迪·卡拉布蒂斯是一位杰出的CIO,她的职业生涯横跨多个行业和地区,经历了多次变革时刻。她在福特和通用汽车锻炼了领导力和技术专长,后来在戴尔、拜奥根和国家电网等公司担任高管,推动战略创新。本文总结了她对IT领导者核心技能的见解,包括战略沟通、情商、协作、远见卓识、变革管理和敏捷性等,对当今IT领导者具有重要参考价值。
边缘 AI 计算将使人形机器人、智能设备和自动驾驶等应用从数据中心和云端服务器解放出来,转移到制造车间、手术室和城市中心等场景。它能实现低延迟和自主决策,使 AI 无处不在,推动工业设施全面自动化,彻底改变商业和生活方式。边缘 AI 正在快速发展,各大科技公司纷纷推出相关硬件和软件平台,未来将为各行各业带来巨大变革。