英特尔公司正在收购一家名为Granulate Cloud Solutions的初创公司,该公司可利用人工智能技术帮助企业加速应用和降低基础设施成本。

英特尔今天早上宣布了这笔交易,但没有披露财务条款,不过根据TechCrunch援引多个消息来源称,此次的收购价格约为6.5亿美元。
随着时间的推移,支持某个应用所需的数据中心基础设施规模是会发生改变的。例如对于电商应用来说,对基础设施的需求量可能会随着购物者数量的变化而发生变化,而确定需要把多少硬件资源分配给工作负载,以及何时分配,这些很大程度上都是由软件自动执行的。
尽管分配基础设施资源的过程是自动化的,但在某些情况下,这也可能是效率低下的。在数据中心内,经常会出现多个应用同时请求硬件资源的情况。有的时候,一个应用的硬件请求可能会影响其他应用,即使理论上所有这些请求都是可以同时执行的。
总部位于以色列特拉维夫的Granulate公司,开发了一个软件平台,该平台消除了分配硬件资源给应用过程中很多不必要的延迟。因为这种延迟经常发生,所以减少延迟可以显着加快处理速度。根据Granulate称,该平台可以将应用处理某些请求的时间缩短多达40%。
除了改善用户体验之外,加速应用还有其他好处,例如提高工作负载的性能,使其能够用更少的基础设施执行计算任务,其结果就是使用Granulate的平台让企业可以将云基础设施成本降低多达60%。
一年前,Granular与英特尔合作开展了一项计划,旨在利用Granulate的软件平台优化基于英特尔至强处理器的服务器。英特尔表示,收购完成之后,将“迅速扩展Granulate的优化软件,覆盖英特尔整个数据中心产品组合”。
“Granulate尖端的自主优化软件可以应用于生产型工作负载,无需客户更改代码,就可以为每个云和数据中心客户带来优化的硬件和软件价值,”英特尔公司执行副总裁、数据中心和人工智能事业部总经理Sandra Rivera这样表示。
英特尔预计将在该季度完成此次收购,届时Granulate的120名员工将加入英特尔数据中心和人工智能事业群。
此次收购将增强英特尔在人工智能市场的能力,而该市场已经成为英特尔近年来的一大重点。Granulate的平台依靠机器学习算法来提高数据中心基础设施效率,这些算法可以评估数据中心应用访问硬件资源的情况,然后对这些信息进行分析,以找到提高性能的方法。
英特尔对人工智能的投资也在从软件扩展到硬件方面,英特尔的很多处理器(包括一些消费类芯片)都配备了针对机器学习任务进行优化的电路,此外还提供越来越多专为运行AI工作负载而开发的芯片。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。