云计算、数据中心、5G建设等新基建产业正在加速发展,数字化转型将带动AI芯片需求的增长,以支持高效处理海量数据,从而推动AI芯片行业的快速发展和持续创新。
在CPU之外,新的用于提升计算能力的芯片不断涌现,按照技术架构的不同可分为通用图形处理器(GPGPU)、可编程门阵列器(FPGA)、专用集成电路(ASIC)等类型,行业内统称为AI芯片。
AI芯片通常会面对训练和推理两种AI工作负载,由于AI训练市场高度集中,GPGPU架构保持市场领导者的地位。
GPGPU的设计特点在于它对各种运算方式的支持和可编程性,由于其通用性,任何新的算法和应用,都能做到性能和支持之间较好的平衡。同时,基于GPGPU的通用性,GPGPU芯片将在更大程度上降低客户的迁移成本,帮助客户实现无痛迁移。
作为中国第一家通用并行(GPGPU)云端计算芯片及高性能算力系统提供商,天数智芯一直坚持GPGPU战略,持续探索GPGPU市场并推出针对市场及用户需求的优质产品。
在近日举行的人工智能计算大会AICC 2021上,天数智芯产品副总裁邹翾接受记者采访时表示,天数智芯是中国第一家通用GPU提供商,也是唯一一家实现试量产7纳米GPGPU产品的厂商。
GPGPU设计的难度业内有目共睹,从产品的软、硬件架构,计算核心设计,到编译器、驱动、函数库开发,每个环节都需要极其扎实的研发功底,可见产品从实验室走向量产绝非易事。
邹翾所提到的7纳米GPGPU产品加速卡是天垓100,其性能可与行业主流产品相匹敌,产品性能已经达到并满足数据中心、服务器等领域的设计目标,并实现低成本迁移。
邹翾说,通用GPU对国内来讲是一个从零到一的突破,从技术角度来看,天数智芯与国际领先的GPU是同源的,但是天数智芯没有历史包袱,充分发挥创新能力,聚焦AI,让产品的成本和性能更具竞争力。
为什么这样说呢?因为GPU在一开始是用于图形处理工作负载,而不是AI。当GPU用于AI时,就需要考虑兼容原来的应用与客户兼容,这样从设计芯片和软件栈等方面就会保守。
在新的时代,算力呈现了并行计算化。如今AI芯片百花齐放,异构化趋势明显,专用芯片承载各种各样的AI应用。
邹翾表示,客户和应用是真正驱动所有行业发展的基础。多样化的芯片架构让客户的选择更加困难,毕竟芯片真正能够让客户用起来依靠的是编程接口,也就是软件生态。
天数智芯的GPGPU产品在通用性和兼容性、可编程性等方面优势明显,借助软硬件全栈式解决方案,兼容主流开发生态,帮助用户实现无痛迁移。
算力的重要载体是服务器,天数智芯与浪潮等服务器厂商保持了紧密的合作,确认产品能够即插即用。
据IDC预测,到2024年中国GPU服务器市场规模将达到64亿美元,如果国产GPU能在2024年取得30%的份额,即可获得22亿美元的市场空间。因此,GPGPU在中国的未来需求广泛,且对国民经济的发展至关重要。
“一款高端通用芯片从定义到实现大规模销售需要4~5年时间,未来我们会贴近中国市场,为GPGPU行业提供更多的技术创新、保持产品的迭代更新,通过通用并行计算持续赋能各行各业。“邹翾最后说。
好文章,需要你的鼓励
Meta 推出“Llama for Startups”计划,为在美初创企业提供直接支持与资金,助力开发生成式 AI 应用;同时,Meta在 Llama 模型研发中面临竞争与挑战,努力推动 AI 业务增长。
奥兰多魔术队与SAS达成战略合作,借助SAS Viya平台,通过数据和AI技术全方位提升球迷现场及数字化体验,同时优化票务预测与运营管理。
本文讨论了 MCP、ACP 与 Agent2Agent 三项协议如何助力 AI 系统的互联互通,降低整合复杂性,推动从试验向实用化转型。
DataCore 通过收购专注边缘及分支办公室超融合基础设施(HCI)的 StarWind,结合强大软件优势和虚拟 SAN 技术,旨在为分布式网络提供更灵活、经济和高效的存储解决方案。