9月23日,全球权威AI基准评测MLPerf™公布最新榜单Inference(推理) V1.1,在最受关注的固定任务(Closed)测试中,浪潮获得15项冠军,戴尔、高通、英伟达分别获得8项、5项和4项冠军。
MLPerf™是影响力最广的国际AI性能基准评测,由图灵奖得主大卫•帕特森(David Patterson)联合顶尖学术机构发起成立。2020年,非盈利性机器学习开放组织MLCommons基于MLPerf™基准测试成立,其成员包括谷歌、Facebook、英伟达、英特尔、浪潮、哈佛大学、斯坦福大学、加州大学伯克利分校等50余家全球AI领军企业及顶尖学术机构,致力于推进机器学习和人工智能标准及衡量指标。目前,MLCommons每年组织2次MLPerf™ AI训练性能测试和2次MLPerf™ AI推理性能测试,为用户衡量设备性能提供权威有效的数据指导。
MLPerf™推理V1.1 AI基准测试固定任务(Closed)包括数据中心(共16个项目)和边缘(共14个项目)两大场景。在数据中心场景下设置6个模型,分别是图像识别(ResNet50)、医学影像分割(3D-UNet)、目标物体检测(SSD-ResNet34)、语音识别(RNN-T)、自然语言理解(BERT)以及智能推荐(DLRM),其中Bert、DLRM和3D-Unet设有高精度(99.9%)模式。除3D-UNet模型任务只考察Offline离线推理场景性能外,其他模型任务按照Server在线推理和Offline离线推理两种应用场景分别进行性能测试。边缘场景AI模型在数据中心场景的6个模型基础上删减了智能推荐(DLRM)模型,并增加目标物体检测(SSD-MobileNet)模型,所有模型均有Offline离线推理场景和SingleStream单流推理两个场景。
固定任务(Closed)要求参赛各方使用相同模型和优化器,这对于实际用户评测AI计算系统性能具备很强的参考意义,也一直是MLPerf™中角逐最激烈及主流厂商最关注的领域。此次共有英伟达、英特尔、浪潮、高通、阿里巴巴、戴尔、HPE等19家厂商参与到固定任务(Closed)测试竞赛中,其中数据中心场景收到了754项成绩提交,边缘场景收到了448项成绩提交,共1199项成绩提交。
在固定任务的全部30个项目中,浪潮获得15项冠军,位居冠军数量第一,这也是浪潮连续第四次位居MLPerf™ AI基准测试冠军数量榜首。

此次MLPerf™的开放任务(Open)赛道允许参赛方对模型进行任意处理,参加者有cTuning、Krai等6家厂商,数量较上届有下降。此外,本次MLPerf™还共有NVIDIA、浪潮、高通以及戴尔等5家厂商在功耗任务上提交了结果,功耗评测或将成为未来MLPerf™的关注重点之一。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。