IBM Qiskit
单凭正常,相信大家也能想到量子计算机芯片的设计、开发、分析与模拟该有多么困难。没错,如果没有多年教育背景与实践操作,我们根本不可能制造出如此复杂的设备。直到最近,即使是经验最丰富的研究人员,也需要数周甚至几个月时间才能设计出一款最最简单的量子芯片。
量子芯片设计流程图
凭借软件自动化降低设计新课
在2020年完成试发布之后,IBM于2021年3月正式推出了新的开源设计自动化软件Qiski Metal。Qiskit Metal是第一款面向超导设备的自动化设计软件,IBM正在考虑将其扩展到更广泛的量子技术领域。
Qiskit Metal属于IBM通用量子SDK Qiskit库的组成部分。Qiskit Metal的独特之处,在于它能够直接生成芯片设计方案,而不像其他Qiskit资源那样止步于量子计算电路与应用。
Qiskit Metal 的起源
Qiskit Metal 诞生自IBM公司研究人员Zlatko Minev博士之手——一位长年关注创新领域的科技带头人。
2018年,Minev在自己的物理学博士毕业论文中设计出一种先进的实验性技术,有望直接捕捉到运动中的量子跃迁活动,甚至能够在跃迁完成之前将其逆转。凭借这份论文,Minev顺利从耶鲁大学毕业。
他的论文颠覆了100多年之前玻尔提出的量子跃迁理论。Minev证明量子跃迁并非不可预测;相反,一旦开始发生,量子跃迁将表现出连贯性、连续性与确定性。
《MIT技术评论》因这一发现“颠覆了困扰尼尔斯·玻尔与阿尔伯特·爱因斯坦等人的量子物理学支柱”,而将Minev评选为2020年全球35岁以下35位最杰出创新者之一。这项发现也在Discover的《2020年五十大故事》中被评为头号数学/物理科学类发现。
在IBM,Minev对自动化芯片设计流程产生也浓厚兴趣,并开始研究Qiskit Metal的初始版本。时任IBM研究员兼量子计算副总裁的Jay Gambetta很快意识到了这项工作的潜在价值,并决定将Qiskit Metal确立为内部正式项目。
IBM
用户可以使用Python Jupyter notebook或者Metal内置的图形界面从资源库中选择量子元件。如果找不到合适的元件选项,Metal还允许用户灵活创建及定制更多组件。在选择并排布完成之后,算法会自动为各元件设计出连接电路。
Metal还能够自动处理量子比特频率选择、耦合以及多种其他系统设计要素,并通过测试为系统生成可靠的运行性能结果。
在芯片设计完成之后,Qiskit Metal会对设计图进行实时渲染、自动设定材料、划定运行条件并执行经典模拟。通过分析芯片的量子特性,它会得出对应的哈密顿量与耗散属性。在此阶段,用户可以进一步调整设计方案以提高 芯片性能。如果无需其他修改,我们即可提交设计方案以供实际制造。
后续改进
请注意,目前的Qiskit Metal仍处于alpha内测阶段。IBM坚信Qiskit Metal终将成为支持整个量子计算生态系统的重要创建工具,能够极大简化超导设备的设计流程。通过后续发展,Metal还有望应用于其他技术场景。
从长远来看,IBM希望Metal能让更多编程技术不强的用户也通过现成的量子元件与渲染器库轻松构建芯片。可以预见,后续Metal开源社区将开发出大量共享资源。
根据IBM Qiskit Metal网站的介绍,项目未来还将增添能量参与率(EPR)方法、阻抗分析以及集成有源晶振模型等新功能。
分析师意见:
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。