谷歌今天公布了对自定义计算的愿景,透露将采用“片上系统”(SoC)基础设施来取代传统主板作为关键集成点。

到目前为止,谷歌一直依靠“古老”的主板来集成自己的计算基础设施各个组件,包括其CPU、网络、存储设备、定制加速卡和内存。但是,当计算达到拐点时,就需要一种新的方法,谷歌系统基础设施副总裁Amit Vahdat在博客中这样表示。
Vahdat说:“与其将组件集成在用几英寸电线隔开的主板上,我们不如采用SoC设计,将多项功能集成到同一个芯片上,或者在一个封装内的多个芯片上。换句话说,SoC就是一种新型主板。”
Vahdat说,SoC有助于确保工作负载与底层硬件之间更深入的集成。他解释说,因为SoC上不同组件之间的延迟和带宽可以提高几个数量级,而与主板上组合单个ASIC相比,SoC的好处有降低功耗和降低成本等。
Vahdat说:“就像在主板上一样,各个功能单元(例如CPU、TPU、视频转码、加密、压缩、远程通信、安全数据汇总等)也来自不同的来源。我们可以按需购买,按需配置,构建让整个行业受益的生态系统。”
他透露,为了推动未来的SoC设计计划,谷歌已经聘请了前英特尔芯片设计师Uri Frank担任新的工程副总裁。Frank拥有超过25年的芯片设计经验,将领导位于以色列的一个新部门,负责设计谷歌的下一代计算基础设施。
Frank说:“谷歌已经设计并构建了一些全球最大、最高效的计算系统。长期以来,定制芯片一直是该策略的一个重要组成部分。”
Google在自研云计算基础设施芯片方面拥有悠久的历史。Vahdat举例说,2016年谷歌公布了第一批TPU,一种用于运行实时语音搜索、照片对象识别和交互式语言翻译等工作负载的专用CPU。他解释说,在运行这些任务方面,TPU的效率比英特尔和AMD的通用芯片高效得多,如果没有TPU,谷歌也就无法很好地提供这些服务。”
除了芯片,谷歌还开发了很多定制硬件,包括固态盘、硬盘驱动器、网络交换机和网络接口卡等。
Vahdat说,未来谷歌的SoC将使其能够设计更多专门针对单个应用的定制硬件,不过他坦言,要足够快速地开发以跟上当前所有不同云服务发展的步伐,还是相当挑战的。
“我们将与全球合作伙伴生态系统一起,继续在计算基础设施的领先优势上进行创新,提供目前其他厂商无法提供的下一代功能,并为下一波人类尚未设想的应用和服务创造沃土。”
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。