谷歌今天公布了对自定义计算的愿景,透露将采用“片上系统”(SoC)基础设施来取代传统主板作为关键集成点。
到目前为止,谷歌一直依靠“古老”的主板来集成自己的计算基础设施各个组件,包括其CPU、网络、存储设备、定制加速卡和内存。但是,当计算达到拐点时,就需要一种新的方法,谷歌系统基础设施副总裁Amit Vahdat在博客中这样表示。
Vahdat说:“与其将组件集成在用几英寸电线隔开的主板上,我们不如采用SoC设计,将多项功能集成到同一个芯片上,或者在一个封装内的多个芯片上。换句话说,SoC就是一种新型主板。”
Vahdat说,SoC有助于确保工作负载与底层硬件之间更深入的集成。他解释说,因为SoC上不同组件之间的延迟和带宽可以提高几个数量级,而与主板上组合单个ASIC相比,SoC的好处有降低功耗和降低成本等。
Vahdat说:“就像在主板上一样,各个功能单元(例如CPU、TPU、视频转码、加密、压缩、远程通信、安全数据汇总等)也来自不同的来源。我们可以按需购买,按需配置,构建让整个行业受益的生态系统。”
他透露,为了推动未来的SoC设计计划,谷歌已经聘请了前英特尔芯片设计师Uri Frank担任新的工程副总裁。Frank拥有超过25年的芯片设计经验,将领导位于以色列的一个新部门,负责设计谷歌的下一代计算基础设施。
Frank说:“谷歌已经设计并构建了一些全球最大、最高效的计算系统。长期以来,定制芯片一直是该策略的一个重要组成部分。”
Google在自研云计算基础设施芯片方面拥有悠久的历史。Vahdat举例说,2016年谷歌公布了第一批TPU,一种用于运行实时语音搜索、照片对象识别和交互式语言翻译等工作负载的专用CPU。他解释说,在运行这些任务方面,TPU的效率比英特尔和AMD的通用芯片高效得多,如果没有TPU,谷歌也就无法很好地提供这些服务。”
除了芯片,谷歌还开发了很多定制硬件,包括固态盘、硬盘驱动器、网络交换机和网络接口卡等。
Vahdat说,未来谷歌的SoC将使其能够设计更多专门针对单个应用的定制硬件,不过他坦言,要足够快速地开发以跟上当前所有不同云服务发展的步伐,还是相当挑战的。
“我们将与全球合作伙伴生态系统一起,继续在计算基础设施的领先优势上进行创新,提供目前其他厂商无法提供的下一代功能,并为下一波人类尚未设想的应用和服务创造沃土。”
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。