Elementary Robotics 通过 NVIDIA Jetson 提高产品跟踪与质检能力,其服务客户包括丰田。
Arye Barnehama 曾是一家可穿戴计算创业公司的创始人,他深谙此类消费设备制造业的艰辛。2014 年,他移居中国深圳,亲自监督一条脑电波监测头巾 Melon的生产线。
正是这样的一次经历给他留下了制造需要自动化的深刻印象。
于是,他开始了 Elementary Robotics 的项目,这家公司为制造业开发机器人,其总部位于洛杉矶,并由帕萨迪纳的 Idealab 孵化。
Elementary Robotics 成立于 2017年,最近刚刚获得了 1,270 万美元的 A 轮融资,其中就包括来自客户丰田的投资。
Elementary Robotics 在需要跟踪数千个零部件的客户中部署。它的系统不断对算法进行培训,进化检测功能。
用于生产质检的 Jetson
Elementary Robotics 开发了自己的硬件和软件,用于制造过程中的产品质量检测。此外 Elementary Robotics 提供了一个由 Jetson 驱动的机器人,用于检查零件有无缺陷,致力于通过零部件的跟踪检测和问题发现,来提高产品质量。
要在快速移动的生产线上检测出最小的缺陷,就需要使用 AI 实时处理高分辨率相机数据。借助启用了嵌入式 CUDA 的 GPU 和 Jetson 上的 CUDA-X AI 软件,可以实现这一点。当 Jetson 平台根据视频流做出决策时,所有决策都被吸收到其云数据库中,以便客户能够查询数据。
结果以及实时视频也将发布到 Elementary Robotics Web 应用程序中,且可以从任何地方进行访问。
Elementary Robotics 的系统还使公司能够在将供应商的零件投入生产线之前对其进行检查,从而避免了代价高昂的故障。它可用于检查生产线上的装配以及在后期生产中进行质量控制。
它的应用包括对电子印刷电路板和组件,汽车零部件以及轻工业用齿轮的检查。 Elementary Robotics 的客户还将其平台用于包装和消费品,例如瓶子,帽子和商标标签。
“所有人对质量的需求一直在上升,” Barnehama 说。“我们使用 NVIDIA 系统在边缘上进行实时推理来进行检测,帮助提高产品质量。”
Jetson 平台最近在基于 SoC 的边缘设备的计算机视觉和对话 AI 用例中展示了 MLPerf AI 推理基准测试的领导地位。
Elementary Robotics 是 NVIDIA 初创加速计划的成员,它是一个可以帮助 AI 和数据科学初创公司更快推向市场的项目。
可追溯的操作
这家初创公司的支持 Jetson 的机器学习系统可以处理瞬间的异常检测,以发现生产线上的错误。当有缺陷零件退回时,Elementary Robotics 可以了解它如何发生的。其应用场景包括电子,汽车,医疗,包装消费品,物流等等。
Barnehama 说,对于制造商而言,这种可追溯的操作非常重要,公司可以回头找到并解决问题的源头,以提高产品可靠性。
“你一定希望可以胸有成竹的说,Ok 我们这里有件缺陷产品被退回了,让我查查它是什么时候做得产品检测的,我拥有所有的数据。”Barnehama 说。
企业用户,开发人员和 DIY 爱好者可以使用 NVIDIA Jetson 创建 AI 应用程序,同时学生和教育工作者也可使用 NVIDIA Jetson 学习和教授 AI。
好文章,需要你的鼓励
尽管谷歌AlphaFold在2021年带来突破,但医药AI发展正面临数据瓶颈。在BIO 2025大会上,业界领袖指出,AI在蛋白质领域成功源于丰富的历史数据,而临床试验等领域数据稀缺成为主要挑战。医药公司正将AI应用于研发全链条,从靶点识别到临床试验优化,但需要专业团队和数据支撑。行业合作模式也在转变,从服务供应商关系转向深度合作伙伴关系。专家提醒,AI应用需平衡速度与质量,确保程序的严谨性。
哈尔滨工业大学团队开发的Optimus-3是首个在Minecraft环境中具备完整认知能力的AI系统,能够同时处理感知、规划、行动、定位和反思五大任务。该系统采用专家混合架构和任务级路由机制,有效解决了多任务学习中的干扰问题,并通过多模态推理增强强化学习显著提升了视觉相关任务的表现。实验结果显示,Optimus-3在各项任务上均超越了现有最先进系统,为通用人工智能的发展提供了重要技术路径。
随着AI快速重塑商业格局,企业领导者被迫重新审视人性化管理的价值。长期以来,管理者专注于数据优化和效率提升,却忽视了信任、创造力、同理心等人文要素。AI的发展并非威胁人性,而是提供了重新平衡的机会。混合智能结合人工智能与人类智慧,创造出更可持续、创新和可信的结果。领导者需要培养双重素养:既要理解AI技术能力,更要深刻认识人性化管理的独特价值,从而打造真正服务于人类福祉的组织。
香港科技大学团队提出PosterCraft统一框架,通过四阶段训练流程实现高质量美学海报端到端生成。该方法摒弃传统模块化设计,采用整体性创作思路,在文字准确性和视觉美感方面显著超越现有开源模型,接近商业系统水平,为AI创意设计领域带来重要突破。