Elementary Robotics 通过 NVIDIA Jetson 提高产品跟踪与质检能力,其服务客户包括丰田。
Arye Barnehama 曾是一家可穿戴计算创业公司的创始人,他深谙此类消费设备制造业的艰辛。2014 年,他移居中国深圳,亲自监督一条脑电波监测头巾 Melon的生产线。
正是这样的一次经历给他留下了制造需要自动化的深刻印象。
于是,他开始了 Elementary Robotics 的项目,这家公司为制造业开发机器人,其总部位于洛杉矶,并由帕萨迪纳的 Idealab 孵化。
Elementary Robotics 成立于 2017年,最近刚刚获得了 1,270 万美元的 A 轮融资,其中就包括来自客户丰田的投资。
Elementary Robotics 在需要跟踪数千个零部件的客户中部署。它的系统不断对算法进行培训,进化检测功能。
用于生产质检的 Jetson
Elementary Robotics 开发了自己的硬件和软件,用于制造过程中的产品质量检测。此外 Elementary Robotics 提供了一个由 Jetson 驱动的机器人,用于检查零件有无缺陷,致力于通过零部件的跟踪检测和问题发现,来提高产品质量。
要在快速移动的生产线上检测出最小的缺陷,就需要使用 AI 实时处理高分辨率相机数据。借助启用了嵌入式 CUDA 的 GPU 和 Jetson 上的 CUDA-X AI 软件,可以实现这一点。当 Jetson 平台根据视频流做出决策时,所有决策都被吸收到其云数据库中,以便客户能够查询数据。
结果以及实时视频也将发布到 Elementary Robotics Web 应用程序中,且可以从任何地方进行访问。
Elementary Robotics 的系统还使公司能够在将供应商的零件投入生产线之前对其进行检查,从而避免了代价高昂的故障。它可用于检查生产线上的装配以及在后期生产中进行质量控制。
它的应用包括对电子印刷电路板和组件,汽车零部件以及轻工业用齿轮的检查。 Elementary Robotics 的客户还将其平台用于包装和消费品,例如瓶子,帽子和商标标签。
“所有人对质量的需求一直在上升,” Barnehama 说。“我们使用 NVIDIA 系统在边缘上进行实时推理来进行检测,帮助提高产品质量。”
Jetson 平台最近在基于 SoC 的边缘设备的计算机视觉和对话 AI 用例中展示了 MLPerf AI 推理基准测试的领导地位。
Elementary Robotics 是 NVIDIA 初创加速计划的成员,它是一个可以帮助 AI 和数据科学初创公司更快推向市场的项目。
可追溯的操作
这家初创公司的支持 Jetson 的机器学习系统可以处理瞬间的异常检测,以发现生产线上的错误。当有缺陷零件退回时,Elementary Robotics 可以了解它如何发生的。其应用场景包括电子,汽车,医疗,包装消费品,物流等等。
Barnehama 说,对于制造商而言,这种可追溯的操作非常重要,公司可以回头找到并解决问题的源头,以提高产品可靠性。
“你一定希望可以胸有成竹的说,Ok 我们这里有件缺陷产品被退回了,让我查查它是什么时候做得产品检测的,我拥有所有的数据。”Barnehama 说。
企业用户,开发人员和 DIY 爱好者可以使用 NVIDIA Jetson 创建 AI 应用程序,同时学生和教育工作者也可使用 NVIDIA Jetson 学习和教授 AI。
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。