随着社会智慧程度的提高,海量数据收集、分析、处理带来的挑战越来越大。数据中心作为智能化的核心基础设施,未来会成为科技新基建的主线之一。那么在“新基建”背景下,数据中心会如何变化吗?我们不妨从AI的视角看一下数据中心的发展走向。
一方面,数据中心越来越多承担人工智能等应用,人工智能计算需求未来将占据80%以上的计算需求。这就需要大量的AI服务器部署到数据中心,这些服务器从底层硬件到上传应用都实现了软件定义,更好地适配AI应用工作负载。
从这个意义上说,未来一定是异构计算的世界,也就是“术业有专攻”,不同的工作负载需要专业的芯片进行处理,这也是现在GPU、FPGA、AI加速处理器等不断涌现的原因。
另一方面,人工智能技术也可以用于数据中心的智能化运维,比如机器巡检、故障预测和负载管理等。这些智能化场景改变了整个数据中心的管理方式,毕竟数据中心规模越来越大,承载的业务也日趋多样化,如果采用人工方式显然是无法应对的。
数据中心的运维如何从以人为本到以智为本,通过算法和数据模型、历史使用等数据,实现自动化的运行和无人值守,这是当前很多用户非常需要的技术。AIOps智能运维基于已有的运维数据(日志、监控信息、应用信息等),通过机器学习的方式实现自动化运维。
在如今AI无处不在的时代,作为底座的数据中心不光承载AI,也在与AI进行融合,也就是双方实现共生。展望未来,智能化将渗透到各行各业。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。