随着社会智慧程度的提高,海量数据收集、分析、处理带来的挑战越来越大。数据中心作为智能化的核心基础设施,未来会成为科技新基建的主线之一。那么在“新基建”背景下,数据中心会如何变化吗?我们不妨从AI的视角看一下数据中心的发展走向。
一方面,数据中心越来越多承担人工智能等应用,人工智能计算需求未来将占据80%以上的计算需求。这就需要大量的AI服务器部署到数据中心,这些服务器从底层硬件到上传应用都实现了软件定义,更好地适配AI应用工作负载。
从这个意义上说,未来一定是异构计算的世界,也就是“术业有专攻”,不同的工作负载需要专业的芯片进行处理,这也是现在GPU、FPGA、AI加速处理器等不断涌现的原因。
另一方面,人工智能技术也可以用于数据中心的智能化运维,比如机器巡检、故障预测和负载管理等。这些智能化场景改变了整个数据中心的管理方式,毕竟数据中心规模越来越大,承载的业务也日趋多样化,如果采用人工方式显然是无法应对的。
数据中心的运维如何从以人为本到以智为本,通过算法和数据模型、历史使用等数据,实现自动化的运行和无人值守,这是当前很多用户非常需要的技术。AIOps智能运维基于已有的运维数据(日志、监控信息、应用信息等),通过机器学习的方式实现自动化运维。
在如今AI无处不在的时代,作为底座的数据中心不光承载AI,也在与AI进行融合,也就是双方实现共生。展望未来,智能化将渗透到各行各业。
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。