随着社会智慧程度的提高,海量数据收集、分析、处理带来的挑战越来越大。数据中心作为智能化的核心基础设施,未来会成为科技新基建的主线之一。那么在“新基建”背景下,数据中心会如何变化吗?我们不妨从AI的视角看一下数据中心的发展走向。
一方面,数据中心越来越多承担人工智能等应用,人工智能计算需求未来将占据80%以上的计算需求。这就需要大量的AI服务器部署到数据中心,这些服务器从底层硬件到上传应用都实现了软件定义,更好地适配AI应用工作负载。
从这个意义上说,未来一定是异构计算的世界,也就是“术业有专攻”,不同的工作负载需要专业的芯片进行处理,这也是现在GPU、FPGA、AI加速处理器等不断涌现的原因。
另一方面,人工智能技术也可以用于数据中心的智能化运维,比如机器巡检、故障预测和负载管理等。这些智能化场景改变了整个数据中心的管理方式,毕竟数据中心规模越来越大,承载的业务也日趋多样化,如果采用人工方式显然是无法应对的。
数据中心的运维如何从以人为本到以智为本,通过算法和数据模型、历史使用等数据,实现自动化的运行和无人值守,这是当前很多用户非常需要的技术。AIOps智能运维基于已有的运维数据(日志、监控信息、应用信息等),通过机器学习的方式实现自动化运维。
在如今AI无处不在的时代,作为底座的数据中心不光承载AI,也在与AI进行融合,也就是双方实现共生。展望未来,智能化将渗透到各行各业。
好文章,需要你的鼓励
周一AWS美东数据中心DNS故障导致数百万用户和上千家企业断网,Reddit、Snapchat、银行和游戏平台均受影响。专家认为这凸显了冗余备份的重要性,CIO需要根据业务关键性进行风险评估,优先保护核心系统。单一供应商策略仍可行,但需通过多区域部署分散风险,建立故障转移计划。金融、医疗等高风险行业需更高冗余级别。
上海AI实验室等机构联合提出FrameThinker框架,革命性地改变了AI处理长视频的方式。该系统采用"侦探式"多轮推理,先快速扫描全视频获得概览,再有针对性地深入分析关键片段。通过两阶段训练和认知一致性验证,FrameThinker在多个视频理解基准测试中准确率平均提升10.4%,计算效率提高20倍以上,为AI视频理解领域带来突破性进展。
英国政府发布新的反勒索软件指导文件,旨在解决供应链安全薄弱环节。该指南与新加坡当局联合制定,帮助组织识别供应链问题并采取实际措施检查供应商安全性。英国国家网络安全中心过去一年处理了204起"国家重大"网络安全事件。指南强调选择安全可靠的供应商、加强合同网络安全条款、进行独立审计等措施,以提升供应链韧性和防范网络攻击。
复旦大学团队创建MedQ-Bench基准,首次系统评估AI模型医学影像质量评估能力。研究覆盖五大成像模式,设计感知-推理双层评估体系,意外发现医学专用AI表现不如通用AI。结果显示最佳AI模型准确率仅68.97%,远低于人类专家82.50%,揭示了AI在医学影像质控应用中的现实挑战和改进方向。