随着社会智慧程度的提高,海量数据收集、分析、处理带来的挑战越来越大。数据中心作为智能化的核心基础设施,未来会成为科技新基建的主线之一。那么在“新基建”背景下,数据中心会如何变化吗?我们不妨从AI的视角看一下数据中心的发展走向。
一方面,数据中心越来越多承担人工智能等应用,人工智能计算需求未来将占据80%以上的计算需求。这就需要大量的AI服务器部署到数据中心,这些服务器从底层硬件到上传应用都实现了软件定义,更好地适配AI应用工作负载。
从这个意义上说,未来一定是异构计算的世界,也就是“术业有专攻”,不同的工作负载需要专业的芯片进行处理,这也是现在GPU、FPGA、AI加速处理器等不断涌现的原因。
另一方面,人工智能技术也可以用于数据中心的智能化运维,比如机器巡检、故障预测和负载管理等。这些智能化场景改变了整个数据中心的管理方式,毕竟数据中心规模越来越大,承载的业务也日趋多样化,如果采用人工方式显然是无法应对的。
数据中心的运维如何从以人为本到以智为本,通过算法和数据模型、历史使用等数据,实现自动化的运行和无人值守,这是当前很多用户非常需要的技术。AIOps智能运维基于已有的运维数据(日志、监控信息、应用信息等),通过机器学习的方式实现自动化运维。
在如今AI无处不在的时代,作为底座的数据中心不光承载AI,也在与AI进行融合,也就是双方实现共生。展望未来,智能化将渗透到各行各业。
好文章,需要你的鼓励
本文探讨了AI驱动的网络攻击如何在短短51秒内突破网络防线,并介绍了CISO们应对这些超高速攻击的策略。重点包括零信任架构、身份验证强化、AI驱动的实时威胁检测等。文章强调了迅速撤销会话令牌、统一端点和云安全、以及从恶意软件检测转向凭证滥用预防的重要性。
Lovelace Studio 正在开发名为 Nyric 的 AI 工具,帮助玩家在生存制作类沙盒游戏中打造自己的游戏世界。玩家可以使用 AI 工具创建独特风格的世界,并与其他玩家互动。该工具旨在赋予独立创作者和社交玩家更多能力,让他们能够轻松构建和连接自己的虚拟世界。
随着AI代码生成工具的广泛应用,企业面临着新的挑战。AI生成的代码可能存在安全漏洞、架构问题和合规风险。为此,企业需要实施严格的验证流程,认识AI在复杂代码库中的局限性,理解AI代码的特有问题,要求开发人员对代码负责,并建立高效的AI工具审批机制。同时,专门的代码分析工具也变得不可或缺。
AI 语音克隆技术的滥用正日益成为企业面临的重大安全威胁。近期多起高调事件显示,不法分子利用 AI 生成的虚假音频视频进行诈骗。目前许多语音克隆应用缺乏有效防护措施,企业领导人的公开音频很容易被用于克隆。专家呼吁采取多因素认证等措施加强防范,并预计未来将出台更多监管措施和检测技术来应对这一威胁。