NVIDIA凭借A100进一步扩大了在MLPerf基准测试中的领先优势,实现了比CPU快237倍的AI推理性能,助力企业将AI研究转化为生产力

加利福尼亚州圣克拉拉市—2020年10月22日—NVIDIA今日宣布,其AI计算平台在最新一轮MLPerf基准测试中再次打破性能记录,在这一业内唯一评估硬件、软件和服务的第三方AI性能基准测试中进一步扩大了其领先优势。
在今年第二轮MLPerf 推理测试中,NVIDIA创下了数据中心与边缘计算系统全部六个应用领域的记录。此次测试中,计算机视觉测试从最初的两项扩展到四项,涵盖了AI应用增长最快的领域,包括:推荐系统、自然语言理解、语音识别和医疗影像。
凭借NVIDIA A100 Tensor Core GPU出色的推理性能,各个行业的机构将AI研究转化为日常运营中的生产力。金融机构使用对话式AI更快速地回答客户问题,零售商们使用AI保证货架库存充足,医疗机构使用AI分析数百万张医疗影像,以更准确地诊断疾病,从而挽救生命。
NVIDIA加速计算部门总经理兼副总裁Ian Buck表示:“我们正处在一个转折点,各个行业都致力于更好地利用AI,从而提供新的服务并寻求业务的发展。”
“NVIDIA为MLPerf上取得的成绩付出了巨大的努力,将助力各企业的AI性能提升到新的高度,以改善我们的日常生活。”
在MLPerf最新结果出炉之际,NVIDIA的AI推理业务也已得到迅速扩展。五年前,只有少数领先的高科技公司使用GPU进行推理。现在,企业可通过各大云和数据中心基础设施供应商来使用NVIDIA的AI平台。各行业都在使用NVIDIA的AI推理平台改善业务运营,提供更多的服务。
此外,NVIDIA GPU首次在公有云中实现了超越CPU的AI推理能力。基于 NVIDIA GPU的总体云端AI推理计算能力每两年增长约10倍。
NVIDIA问鼎AI推理性能的新高峰
NVIDIA及其合作伙伴提交了基于NVIDIA加速平台的MLPerf 0.7的测试结果。该平台包含NVIDIA数据中心GPU、边缘AI加速器和经过优化的NVIDIA软件。
NVIDIA 于今年早些时候发布了A100。凭借其第三代Tensor Core核心和多实例GPU技术,A100在ResNet-50测试中的领先优势进一步扩大。在上一轮测试中,它以30倍比6倍的成绩击败了CPU的测试结果。另外,此次MLPerf Inference 0.7基准测试中,新增了针对数据中心推理性能的推荐系统测试。在该测试中,A100所展现出的性能比最先进的CPU高出237倍。
这意味着,一套DGX A100系统可以提供相当于近1000台双插槽CPU服务器的性能,能为客户AI推荐系统模型从研发走向生产的过程,提供极高的成本效益。
基准测试结果显示,NVIDIA T4 Tensor Core GPU仍然是主流企业、边缘服务器和高成本效益云实例的可靠推理平台。在同一测试中,NVIDIA T4 GPU的性能比CPU高出28倍。此外,NVIDIA Jetson AGX Xavier已成为基于Soc的边缘设备中最强大的平台。
这些结果离不开高度优化的软件堆栈,包括NVIDIA TensorRT推理优化器和NVIDIA Triton推理服务软件。这两款软件堆栈均可在NGC(NVIDIA的软件目录)中获取。
除NVIDIA提交的结果外,还有11家NVIDIA合作伙伴提交了基于NVIDIA GPU的1029个测试结果,占数据中心和边缘类别中参评测试结果总数的85%以上。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。