IBM今天宣布大型量子计算机开发工作取得新的里程碑进展,27量子位Falcon芯片的量子数量增加了一倍。
量子数量是衡量量子计算机性能的一项标准。Falcon芯片的量子数量为64,是IBM上一代系统的2倍。迄今为止,除了IBM之外只有一家公司的系统达到了64:霍尼韦尔的6量子位“离子阱”平台。
IBM设定的目标是至少将硬件平台的量子数量增加一倍,并在2018年和2019年成功实现了这一目标。再加上今天的公告,IBM现在可以声称自己已经连续第三年保持这种增长势头了。
IBM今年早些时候宣布对三款27量子位Falcon芯片其中一款进行升级,实现了最新的性能提升。该处理器也是IBM近年来部署的28个量子处理器中最新开发的一款处理器,是IBM正在并行研究的多个芯片设计之一。
IBM表示,通过“硬件感知”优化实现了量子数量的增加,让Falcon芯片释放更高的性能。这些优化包括对Qiskit的软件改进,Qiskit是IBM运行在量子系统上的代码编译器。此外,IBM的研究人员还开发了一种减少量子比特噪声或干扰(是导致信息丢失和量子计算速度放缓的错误来源)的技术。
此次公告最值得注意的细节之一是,IBM的优化技术可以应用于其他芯片,例如未来推出比27量子位Falcon更大的处理器中,这项技术就有助于更高性能的提升。
IBM的下一代系统已经就绪了,IBM量子计算副总裁Jay Gambetta表示,他所带领的团队正在开发一种新的、“大幅”改进的53量子位Hummingbird处理器,IBM曾在今年年初公布了一些关于该处理器的详细信息。
Gambetta在声明中补充说:“IBM所采用的全栈方法,为开发硬件感知的应用、算法和电路提供了一条创新途径。”
即使IBM等厂商近年来取得了量子技术上的进步,但大规模量子计算要变成现实,还有很长的一段路要走。作为此次IBM新增优化的重点之一,量子位噪声仍然量子计算技术发展的主要障碍。研究人员还试图解决其他挑战,例如减少量子芯片传输数据所需的网络线缆数据等等。
尽管如此,科学家们已经开始研究如何将量子计算应用于现实中的方法了,其中IBM量子芯片发挥了重要作用。IBM已经通过云服务的形式让研究人员可以使用该芯片,而且该服务在全球范围内拥有超过25万注册用户。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
MWS AI联合ITMO大学提出CoSpaDi技术,通过稀疏字典学习实现大型语言模型高效压缩。该方法突破传统低秩分解限制,为不同知识类型提供定制化存储方案,在20%-50%压缩比例下显著优于现有方法。支持跨层字典共享和数据感知优化,兼容量化技术,为移动设备和边缘计算部署大模型提供实用解决方案。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
莫斯科大学团队开发的TUN3D系统实现了重大技术突破,首次让普通相机拍摄的照片就能准确识别房间结构和物体位置。该系统无需专业3D扫描设备或精确位置信息,仅用手机拍摄的多角度照片即可重建完整3D场景模型。在多个标准数据集测试中均达到最佳性能,为房地产、室内设计、电商等领域带来革命性应用前景。