IBM今天宣布大型量子计算机开发工作取得新的里程碑进展,27量子位Falcon芯片的量子数量增加了一倍。
量子数量是衡量量子计算机性能的一项标准。Falcon芯片的量子数量为64,是IBM上一代系统的2倍。迄今为止,除了IBM之外只有一家公司的系统达到了64:霍尼韦尔的6量子位“离子阱”平台。
IBM设定的目标是至少将硬件平台的量子数量增加一倍,并在2018年和2019年成功实现了这一目标。再加上今天的公告,IBM现在可以声称自己已经连续第三年保持这种增长势头了。
IBM今年早些时候宣布对三款27量子位Falcon芯片其中一款进行升级,实现了最新的性能提升。该处理器也是IBM近年来部署的28个量子处理器中最新开发的一款处理器,是IBM正在并行研究的多个芯片设计之一。
IBM表示,通过“硬件感知”优化实现了量子数量的增加,让Falcon芯片释放更高的性能。这些优化包括对Qiskit的软件改进,Qiskit是IBM运行在量子系统上的代码编译器。此外,IBM的研究人员还开发了一种减少量子比特噪声或干扰(是导致信息丢失和量子计算速度放缓的错误来源)的技术。
此次公告最值得注意的细节之一是,IBM的优化技术可以应用于其他芯片,例如未来推出比27量子位Falcon更大的处理器中,这项技术就有助于更高性能的提升。
IBM的下一代系统已经就绪了,IBM量子计算副总裁Jay Gambetta表示,他所带领的团队正在开发一种新的、“大幅”改进的53量子位Hummingbird处理器,IBM曾在今年年初公布了一些关于该处理器的详细信息。
Gambetta在声明中补充说:“IBM所采用的全栈方法,为开发硬件感知的应用、算法和电路提供了一条创新途径。”
即使IBM等厂商近年来取得了量子技术上的进步,但大规模量子计算要变成现实,还有很长的一段路要走。作为此次IBM新增优化的重点之一,量子位噪声仍然量子计算技术发展的主要障碍。研究人员还试图解决其他挑战,例如减少量子芯片传输数据所需的网络线缆数据等等。
尽管如此,科学家们已经开始研究如何将量子计算应用于现实中的方法了,其中IBM量子芯片发挥了重要作用。IBM已经通过云服务的形式让研究人员可以使用该芯片,而且该服务在全球范围内拥有超过25万注册用户。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。