谷歌今天分享了有关最新一代TPU芯片的早期细节。该芯片用于运行人工智能工作负载,性能是上一代的2倍多。
谷歌的TPU(Tensor Processor Unit)是一种基于AI的、应用特定的集成电路。今天谷歌详细介绍的是第四代TPU的情况,第三代和第二代此前展示出了令人印象深刻的性能水平,谷歌通过 Google Cloud Platform向企业提供这两代芯片。
谷歌称,第四代TPU的平均性能比第三代TPU高出2.7倍。谷歌在最近MLPerf行业竞赛中对比了这两代芯片训练五个主流AI模型的速度。第四代TPU在运行Mask R-CNN模型(用于自动驾驶等用例的图像分割AI)时达到了最高性能,训练速度比上一代芯片快3.7倍。
性能上的大幅提升主要源自于底层的巨大改进。谷歌工程师Naveen Kumar在博客文章中详细介绍称,谷歌已经大幅提高了TPU的内存带宽,也就是芯片从内存中获取数据并进行处理的速度,提高了执行专有计算的性能。
Kumar在帖子中详细介绍说:“谷歌第四代TPU ASIC在运行矩阵乘法(AI模型用来处理数据的一种数学运算方式)的TFLOP性能是TPU v3的2倍多。”与第四代芯片相比,第三代TPU的浮点运算性能为420万亿次。
Kumar称,客户可以很快将会获得有关新一代TPU的更多信息。考虑到目前Google Cloud平台上已经有两个上一代TPU可供租用,所以新一代应用很有可能最终也将落地在Google Cloud在会上。但是,客户可能需要一段时间了,根据ExtremeTech报告称,第四代TPU在MLPerf竞赛期间被列为研究类,也就是说,这款芯片至少在六个月内是无法商用的。
新一代芯片在速度上的提升尤其引人注目,因为它在性能上超过了第三代,在同一项比赛中打破了多个记录。谷歌利用4090个第三代TPU打造了所谓全球最快的AI训练超级计算机。该系统在8个MLPerf基准测试中创下了6项新的记录,并在不到30秒的时间内训练了4个测试模型。
好文章,需要你的鼓励
The Access Group是英国最大的软件公司,估值近100亿英镑。该公司APAC区域技术总监Rolf Krolke分享了公司在频繁并购活动中如何整合各异IT系统的经验。由于自2017年来年均约10次收购,公司面临存储基础设施分散、维护困难等挑战。目前正推进存储现代化项目,将传统存储设备替换为Pure Storage全闪存阵列,并计划在全球10个数据中心部署数十PB容量,以支持新的Access Evo平台和AI应用。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
随着AI模型参数达到数十亿甚至万亿级别,工程团队面临内存约束和计算负担等共同挑战。新兴技术正在帮助解决这些问题:输入和数据压缩技术可将模型压缩50-60%;稀疏性方法通过关注重要区域节省资源;调整上下文窗口减少系统资源消耗;动态模型和强推理系统通过自学习优化性能;扩散模型通过噪声分析生成新结果;边缘计算将数据处理转移到网络端点设备。这些创新方案为构建更高效的AI架构提供了可行路径。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。