谷歌今天分享了有关最新一代TPU芯片的早期细节。该芯片用于运行人工智能工作负载,性能是上一代的2倍多。
谷歌的TPU(Tensor Processor Unit)是一种基于AI的、应用特定的集成电路。今天谷歌详细介绍的是第四代TPU的情况,第三代和第二代此前展示出了令人印象深刻的性能水平,谷歌通过 Google Cloud Platform向企业提供这两代芯片。
谷歌称,第四代TPU的平均性能比第三代TPU高出2.7倍。谷歌在最近MLPerf行业竞赛中对比了这两代芯片训练五个主流AI模型的速度。第四代TPU在运行Mask R-CNN模型(用于自动驾驶等用例的图像分割AI)时达到了最高性能,训练速度比上一代芯片快3.7倍。
性能上的大幅提升主要源自于底层的巨大改进。谷歌工程师Naveen Kumar在博客文章中详细介绍称,谷歌已经大幅提高了TPU的内存带宽,也就是芯片从内存中获取数据并进行处理的速度,提高了执行专有计算的性能。
Kumar在帖子中详细介绍说:“谷歌第四代TPU ASIC在运行矩阵乘法(AI模型用来处理数据的一种数学运算方式)的TFLOP性能是TPU v3的2倍多。”与第四代芯片相比,第三代TPU的浮点运算性能为420万亿次。
Kumar称,客户可以很快将会获得有关新一代TPU的更多信息。考虑到目前Google Cloud平台上已经有两个上一代TPU可供租用,所以新一代应用很有可能最终也将落地在Google Cloud在会上。但是,客户可能需要一段时间了,根据ExtremeTech报告称,第四代TPU在MLPerf竞赛期间被列为研究类,也就是说,这款芯片至少在六个月内是无法商用的。
新一代芯片在速度上的提升尤其引人注目,因为它在性能上超过了第三代,在同一项比赛中打破了多个记录。谷歌利用4090个第三代TPU打造了所谓全球最快的AI训练超级计算机。该系统在8个MLPerf基准测试中创下了6项新的记录,并在不到30秒的时间内训练了4个测试模型。
好文章,需要你的鼓励
UniR(Universal Reasoner)是一种创新的推理增强方法,可为冻结的大语言模型提供即插即用的推理能力。由韩国科学技术院研究团队开发,该方法将推理能力分解为独立的轻量级模块,无需改变主模型结构。UniR的核心优势在于高效训练(仅更新小型推理模块)、出色的模型间迁移能力(小模型可指导大模型)以及模块组合能力(多个专用模块可通过logits相加组合使用)。在数学推理和翻译测试中,UniR显著超越现有微调方法,展示了轻量级模块如何有效增强大语言模型的推理能力。
Nebius团队开发了SWE-rebench,一个自动化管道用于从GitHub收集软件工程任务并进行去污染评估。该系统解决了两大挑战:高质量训练数据稀缺和评估基准容易被污染。通过四阶段处理(初步收集、自动安装配置、执行验证和质量评估),SWE-rebench构建了包含超过21,000个Python交互式任务的数据集,并提供持续更新的评估基准。研究发现部分语言模型在传统基准上的表现可能被污染效应夸大,而DeepSeek模型在开源模型中表现最为稳健。
这项研究提出了JQL(发音为"Jackal"),一种通过多语言方法提升大型语言模型预训练数据质量的创新系统。研究团队从拉马尔研究所等机构通过四阶段方法解决了多语言数据筛选的难题:先由人类评估内容教育价值创建基准数据,然后评估大型语言模型作为"评判者"的能力,接着将这些能力提炼到轻量级评估器中,最后应用于大规模数据筛选。实验表明,JQL在35种语言上显著优于现有方法,甚至能泛化到未见过的语言如阿拉伯语和中文,为多语言AI发展提供了高效可靠的数据筛选方案。
浙江大学和西湖大学研究团队开发的Styl3R实现了艺术风格化3D重建的重大突破,能在不到一秒内从少量未标定照片和任意风格图像创建具有多视角一致性的3D艺术场景。通过创新的双分支网络架构将结构建模与外观着色分离,系统不仅保持了原始场景结构,还准确捕捉了参考风格特征。与现有方法相比,Styl3R在处理速度和视觉质量上均显著领先,为创意内容制作开辟了全新可能。