谷歌今天分享了有关最新一代TPU芯片的早期细节。该芯片用于运行人工智能工作负载,性能是上一代的2倍多。
谷歌的TPU(Tensor Processor Unit)是一种基于AI的、应用特定的集成电路。今天谷歌详细介绍的是第四代TPU的情况,第三代和第二代此前展示出了令人印象深刻的性能水平,谷歌通过 Google Cloud Platform向企业提供这两代芯片。
谷歌称,第四代TPU的平均性能比第三代TPU高出2.7倍。谷歌在最近MLPerf行业竞赛中对比了这两代芯片训练五个主流AI模型的速度。第四代TPU在运行Mask R-CNN模型(用于自动驾驶等用例的图像分割AI)时达到了最高性能,训练速度比上一代芯片快3.7倍。
性能上的大幅提升主要源自于底层的巨大改进。谷歌工程师Naveen Kumar在博客文章中详细介绍称,谷歌已经大幅提高了TPU的内存带宽,也就是芯片从内存中获取数据并进行处理的速度,提高了执行专有计算的性能。
Kumar在帖子中详细介绍说:“谷歌第四代TPU ASIC在运行矩阵乘法(AI模型用来处理数据的一种数学运算方式)的TFLOP性能是TPU v3的2倍多。”与第四代芯片相比,第三代TPU的浮点运算性能为420万亿次。
Kumar称,客户可以很快将会获得有关新一代TPU的更多信息。考虑到目前Google Cloud平台上已经有两个上一代TPU可供租用,所以新一代应用很有可能最终也将落地在Google Cloud在会上。但是,客户可能需要一段时间了,根据ExtremeTech报告称,第四代TPU在MLPerf竞赛期间被列为研究类,也就是说,这款芯片至少在六个月内是无法商用的。
新一代芯片在速度上的提升尤其引人注目,因为它在性能上超过了第三代,在同一项比赛中打破了多个记录。谷歌利用4090个第三代TPU打造了所谓全球最快的AI训练超级计算机。该系统在8个MLPerf基准测试中创下了6项新的记录,并在不到30秒的时间内训练了4个测试模型。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。