Karbon 2.1:Calico网络集成、CSI新功能和拓展API接口让Kubernetes管理更加简单
Nutanix前不久推出Karbon2.0,实现了一键Kubernetes升级,支持气隙环境,并与Nutanix Prism Pro集成,为用户提供统一界面管理体验。紧跟着Karbon2.0的步伐,Nutanix现又宣布重磅推出Karbon 2.1。在最新的Karbon 2.1版本中,Nutanix重点解决了Kubernetes两个最棘手的挑战:网络和存储。
将Kubernetes pods联网并允许其他服务或外部网络访问,这其实是一项非常复杂的工作,通常需要用到overlay网络和NATs。而大规模地进行此项工作就会变得极其复杂。因此,许多寻求容器网络一致体验和跨Kubernetes环境应用能力的云原生企业纷纷转而采用Calico。
Calico融合了灵活的网络功能与可随处运行的安全执行,提供了具有原生Linux内核性能和真正云原生扩展能力的解决方案,因此成为了开源Kubernetes网络技术的事实标准,也是我们许多使用Karbon的客户所要求的标准。得到这样的市场反馈后,我们现在将Calico作为Karbon的集成组件提供给客户。
集成了Calico之后,Karbon用户现使用基于原生工具的简化版Kubernetes网络,与Flannel或基于overlay网络插件相比拥有更强大的吞吐量。这是因为Calico采用的是标准网络工具和公认协议,网络和系统管理员可以依赖已有的知识和经验更加轻松地进行故障排除。
此外,Calico还提供了实施网络安全策略的简单方法。例如,用户可以将pod彼此隔离,并限制对应用程序的双向访问,由此用户可以在应用部署层面拥有更精细的网络控制。
Karbon对Calico的集成得益于Nutanix与Tigera的官方技术联盟。Tigera是一家开源公司,是Project Calico计划的发明者和主要维护者。Tigera在开源Calico项目的基础上推出了Calico Enterprise产品,新增了能帮助多个团队和企业在安全生产环境中运行Kubernetes的多项功能。Tigera的技术应用于最大型的软件服务、金融服务、游戏和零售公司,安全性和合规性对这些公司的业务至关重要。
Tigera产品管理及业务开发副总裁Amit Gupta表示:“我们很高兴能与Nutanix合作,并看到Nutanix将Calico标准化作为Karbon产品的默认CNI。通过将Calico可随处运行的安全执行能力带给Karbon用户,开发人员和集群运营商能够拥有一致的体验,并加速其Kubernetes应用进程。”
卷克隆是一项重要的数据保护能力,近期已在Kubernetes中得到应用。根据Kubernetes用户文档介绍,CSI(容器存储界面)卷克隆功能现可支持在dataSource字段中指定现有PVCs,来表示用户想要进行卷克隆。在Kubernetes中克隆卷时,将创建指定卷的精确副本,并可以与原始卷一样进行使用。
通过在自己的CSI(包含在Karbon中)中添加卷克隆功能,用户可以充分利用Nutanix具有高效空间利用能力的克隆技术。Nutanix可以在创建应用程序时就将数据植入到应用程序中,从而减少安装时间和总体空间使用量。此外,如果使用克隆卷的应用程序需要更大的卷容量,CSI驱动程序会随后相应增加克隆卷的容量。
克隆卷技术为用户提供了一种快速排除有状态容器化应用程序故障的方法,让用户可以即时复制正在运行的应用程序数据,以便诊断问题,或对新版本的应用程序进行测试。
使用Karbon2.1,用户可以进一步利用自己的首选工具和端口来执行Karbon工作流。通过Nutanix的Calm、ServiceNow或任何其他可以发送API指令的端口,都可以自助创建Kubernetes集群。
通过Karbon的增强API,用户可以按需提供Kubernetes集群(向每个开发人员、每个项目等),并且为指定的集群自动收集kubeconfig文件。Karbon 2.1现在还可以实现对集群节点的SSH自动化访问,有助于调试排除故障。
好文章,需要你的鼓励
阿里巴巴通义千问团队发布开源编程模型Qwen3-Coder-480B-A35B-Instruct,专门用于软件开发辅助。该模型采用混合专家架构,拥有4800亿参数,支持25.6万token上下文长度,可在数秒内创建完整功能应用。在SWE-bench基准测试中得分67.0%,表现优于GPT-4和Gemini。模型基于Apache 2.0开源许可,企业可免费使用。AI研究者称其可能是目前最佳编程模型,特别适合企业级代码库理解、自动化代码审查和CI/CD系统集成。
T-Tech公司研究团队开发了SAE Boost助推器系统,通过训练专门的"错误补偿器"来增强AI理解工具对专业领域的理解能力。该系统在化学、俄语和外交等领域测试中显示出显著改进效果,同时完全保持原有通用能力。这种模块化设计为AI系统的持续优化提供了安全可靠的路径,对AI可解释性研究具有重要意义。
SecurityPal成立于2020年,专门处理企业间技术采购中的安全合规问卷。该公司结合AI引擎与位于尼泊尔加德满都的240人分析师团队,帮助供应商和买方快速完成安全评估。平台维护着250万个安全问题的专有语料库,采用"人机协作"模式确保准确性。客户包括OpenAI、Figma等知名企业,服务承诺24小时内完成问卷处理,相比传统手动流程速度提升高达87倍。
斯坦福大学研究团队开发出革命性AI系统,能够像生物学家一样"看懂"蛋白质三维结构并预测功能。该系统通过多层次分析方法,在蛋白质功能预测方面达到90%以上准确率,为新药开发和精准医疗开辟新道路。这项技术不仅加速了蛋白质研究进程,更为解决复杂疾病提供了强大的AI助手,预示着人工智能与生物医学融合的美好前景。