本周微软宣布,已经在Azure云中托管了OpenAI排名第五的AI超级计算机。2019年微软向OpenAI行业研究小组投资了10亿美元。这个AI超算系统包括大约10000个GPU和285000多个CPU核心,将用于提升处理超大型AI模型的能力,据OpenAI称,大型AI模型的规模每3.5个月就会翻一番。微软用于自然语言生成的Turing模型包含约170亿个参数,比去年的最大模型增加了17倍。因此,这个超级计算机将大有用处。
奇怪的是,微软并没有命名这套计算机(这个在超算领域这是闻所未闻的),而且也没有透露任何用户必须了解的详细系统配置信息:用的哪个GPU的开发堆栈,谁家的CPU、以及每个插槽的核心数和线程数、什么网络接口、每个节点(#CPU和#GPU)的配置。尽管没有发言人证实这些信息,但我认为我自己对其中一些重要因素有一些了解。
微软在宣布这一公告的博客文章中,放开了这么一张没有实质内容的超级计算机图片。资料来源:微软
首先,GPU必须是NVIDIA V100,因为a)NVIDIA刚刚发布了A100,在此之前,他们很难交付10000个。 b)GPU不能是AMD Radeons,因为Radeons尚不支持OpenAI研究所需的生态系统。因此经过这么分析筛选,得出的结论就是,GPU就是NVIDIA V100。以10000个为例,假设这对微软来说是一笔非常可观的交易,每个GPU成本仅为5000美元,那么会给NVIDIA带来大约5000万美元的收入,而且也许上个季度就发生了。
说到CPU,计算一下就能知道是AMD EPYC Rome CPU。除非微软花费巨资采购56核至强CPU,否则英特尔至强的核心数尚不足以提供支持。以285000个核心为例,假设双插槽配置的AMD 64核CPU,那就相当于大约2220个节点。每个节点配置4个GPU,可以连接到大约8800个GPU,因此至少需要10000个GPU。有消息灵通的匿名人士证实了我的推理,称确实使用的是AMD EPYC。
互连方面,NVIDIA收购了Mellanox,在超级计算机领域处于领导地位,且倾向于InfiniBand,因此我认为应该采用的是InfiniBand。
虽然我了解到,微软和OpenAI希望这次公告的重点放在公告本身已经他们正在进行的研究上,但这个做法有些过时了,与Satya Nadella倡导的转变是不相符的。在开放的IT世界中,事实信息是至关重要的,公告中应该包含有这些事实。微软使用了类似漫画的图片,而不是吸引人的照片,让我们无法确定使用了哪个系统(猜测是Open Compute HGX,但是…)。那好吧。我做了一些分析研究,得出的结论是AMD、NVIDIA和Mellanox胜出了,他们的领先技术和成果将被用于人工智能研究领域,这一点值得肯定。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。