本周微软宣布,已经在Azure云中托管了OpenAI排名第五的AI超级计算机。2019年微软向OpenAI行业研究小组投资了10亿美元。这个AI超算系统包括大约10000个GPU和285000多个CPU核心,将用于提升处理超大型AI模型的能力,据OpenAI称,大型AI模型的规模每3.5个月就会翻一番。微软用于自然语言生成的Turing模型包含约170亿个参数,比去年的最大模型增加了17倍。因此,这个超级计算机将大有用处。
奇怪的是,微软并没有命名这套计算机(这个在超算领域这是闻所未闻的),而且也没有透露任何用户必须了解的详细系统配置信息:用的哪个GPU的开发堆栈,谁家的CPU、以及每个插槽的核心数和线程数、什么网络接口、每个节点(#CPU和#GPU)的配置。尽管没有发言人证实这些信息,但我认为我自己对其中一些重要因素有一些了解。
微软在宣布这一公告的博客文章中,放开了这么一张没有实质内容的超级计算机图片。资料来源:微软
首先,GPU必须是NVIDIA V100,因为a)NVIDIA刚刚发布了A100,在此之前,他们很难交付10000个。 b)GPU不能是AMD Radeons,因为Radeons尚不支持OpenAI研究所需的生态系统。因此经过这么分析筛选,得出的结论就是,GPU就是NVIDIA V100。以10000个为例,假设这对微软来说是一笔非常可观的交易,每个GPU成本仅为5000美元,那么会给NVIDIA带来大约5000万美元的收入,而且也许上个季度就发生了。
说到CPU,计算一下就能知道是AMD EPYC Rome CPU。除非微软花费巨资采购56核至强CPU,否则英特尔至强的核心数尚不足以提供支持。以285000个核心为例,假设双插槽配置的AMD 64核CPU,那就相当于大约2220个节点。每个节点配置4个GPU,可以连接到大约8800个GPU,因此至少需要10000个GPU。有消息灵通的匿名人士证实了我的推理,称确实使用的是AMD EPYC。
互连方面,NVIDIA收购了Mellanox,在超级计算机领域处于领导地位,且倾向于InfiniBand,因此我认为应该采用的是InfiniBand。
虽然我了解到,微软和OpenAI希望这次公告的重点放在公告本身已经他们正在进行的研究上,但这个做法有些过时了,与Satya Nadella倡导的转变是不相符的。在开放的IT世界中,事实信息是至关重要的,公告中应该包含有这些事实。微软使用了类似漫画的图片,而不是吸引人的照片,让我们无法确定使用了哪个系统(猜测是Open Compute HGX,但是…)。那好吧。我做了一些分析研究,得出的结论是AMD、NVIDIA和Mellanox胜出了,他们的领先技术和成果将被用于人工智能研究领域,这一点值得肯定。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。