北京,2020年3月17日——日前,由企业级云服务商青云QingCloud自主研发的时序数据库ChronusDB正式上线。ChronusDB时序数据库提供超强的查询分析、高性能并发读写、低成本存储、丰富的时序数据处理等能力,满足物联网设备监控分析、工业制造监控分析、系统及业务实时监控等场景的需求,旨在帮助企业实现对物联网数据的全生命周期管理和智能化分析,推动物联网产业朝着更加智能化的方向发展。
近年来,全球将物联网视为信息技术的第三次浪潮,是确立未来信息社会竞争优势的关键。据独立市场研究机构Forrester预测,物联网所带来的产业价值要比互联网高30倍,到2020年,中国物联网产业将成长为一个超过五万亿规模的巨大市场。万物智联时代即将到来,5G、AI、区块链等新一代信息技术与物联网加速融合。在智能互联的愿景中,物联网系统的机器、设备和传感器收集的数据,通过人工智能技术进行分析与关联,以更有意义的方式服务用户。然而,随着物联网数据量呈现指数级增长,时序数据的存储和分析也逐渐成为企业的“必答题”。
当工业物联网、金融交易、天气预测等数据逐渐成为生产生活常态的时候,由需求推动的时序信息就成了数据库的关注重点,而时序数据库就是负责物联网最具价值数据资产的存储分析服务。时序数据的特点是写多读少、冷热分明、高并发写入、无事务要求、海量数据持续写入,可以基于时间区间聚合分析和高效检索。基于此,青云QingCloud面向企业推出一款自主研发的时序数据库——ChronusDB。这是一款高效、安全、易用的时序数据分析利器,支持千亿条结构化数据毫秒级查询;采用高效数据压缩技术,减少存储使用空间,有效降低存储成本;支持近百种聚合函数,提供专业全面的时序数据计算函数支持;支持降采样精度、数据插值,满足各种复杂的业务数据查询场景。
物联网时代,工业互联网产生的数据量比传统的信息化要多数千倍甚至数万倍,并且是实时采集、高频度、高密度的,动态数据模型随时可变。针对如此大规模且复杂数据的采集、存储、分析,企业往往需要的是一整套的物联网解决方案。首先,工业制造企业可借助ChronusDB时序数据库,实现对各种工业生产设备进行实时高效的数据采集和云端汇聚,通过实时的监控系统进行设备状态检测、故障发现及业务趋势分析;其次,企业可借助QingCloud IoT平台收集物联网设备的监控数据,将原始数据全量写入到ChronusDB中,通过其丰富的计算函数支持,快速分析物联网设备产生的时序数据;最后,企业可通过青云QingCloud深度学习平台,实现AI应用的快速量身定制,对物联网全量数据的智能化分析,进而实现智能制造在行业的落地。
5G、人工智能、工业互联网、物联网等新型基础设施,正在成为产业数字化转型的重要引擎,“新基建”浪潮再起,必将引爆物联网时代。近年来,青云QingCloud不断加速自研产品从云计算向物联网的渗透,推动物联网解决方案的快速落地,用实际行动践行着“数字世界之基石”的愿景信条。未来,青云QingCloud将不断加大创新研发的投入,全面赋能万物智联时代,推动数字经济产业升级。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。