Nutanix亚太及日本地区高级副总裁Matt Young
在亚洲企业努力应对一系列社会和自然因素的干扰和冲击的过程中,如何管理员工,维持企业正常运转,尤其是在员工不得不远程办公的情况下如何保证企业生产力,正成为一个日益普遍的问题。
亚洲地区面临的挑战在于,尽管它已成为全球经济中心之一,但仍然需要应对各种人为和自然的不确定性因素。毋庸置疑,亚洲是世界上最具经济活力的地区之一,同时也是世界上自然环境最复杂、不可预测因素最多的地区之一。
对于亚洲许多企业来说,保证业务弹性和连续性以往只是未雨绸缪,现在却成为当务之急。
在中国,受新型冠状病毒肺炎疫情的影响, 许多企业员工无法出门正常上班,而企业运营又需要这些员工“到岗”继续工作,保证生产能力,这种情况让许多企业疲于应对。
由于亚洲仍有数以百万计的人处于远程办公状态,科技对维持经济正常运转的重要作用已经引起了广泛关注。
在近几个月里,一些有先见之明的企业已经利用一系列软件解决方案和应用来应对了近来的不可预测和不确定因素,确保了业务的连续性。
毫无疑问,云技术在其中起了重要作用。公有云、私有云和混合云服务确保了企业可以持续访问和使用关键数据。
与此同时,基础架构由硬件向软件定义的转变,意味着不再需要大量IT人员实际驻守数据中心。数据中心的操作可由远程或少数骨干人员进行处理,因此许多企业能够继续正常运营。
虚拟桌面基础架构(VDI)和桌面即服务(DaaS)是科技助力企业平稳运转的完美范例。 VDI作为云托管桌面,通常位于本地数据中心,由企业内部IT人员进行操作和维护。
VDI的优势在于其为企业提供了定制和控制现场硬件和环境的能力,非常适用于拥有高度敏感数据的企业。这种基础架构部署灵活,可通过简单操作进行精细化扩展,能够充分应对不可预测因素造成的短时间需求增长,例如近来一系列不可预见事件所导致的情况。
VDI能够为企业带来的最大价值在于其能够让企业在不牺牲业务安全性、生产力或性能的情况下,为人员提供流动性和灵活性。它让员工可以在任何地方、任何设备上工作,不受任何限制地安全访问工作桌面、文件和网络。
而DaaS是一种完全外包的虚拟桌面解决方案。它既不依赖也不占用任何内部硬件资源,能够提供与VDI相同的灵活性、安全性和权限,但完全由第三方处理,并且托管在他们的云上。
如今,VDI和DaaS已经成为智慧企业的特征,不仅对业务弹性和连续性至关重要,而且在外部环境相对稳定的时期也能为数字企业带来效益:
此外,VDI在经过近期的几次升级后功能更加强大,获取更加方便,为企业减少了基础架构配置安装的时间、精力和成本,让更多企业能够负担得起。
VDI和DaaS两种模式共同为企业提供了简单易行的远程办公解决方案,无论员工身处何地都能为企业确保生产力和效率。随着企业正在积极寻求应对未来风险和外部干扰的解决方案,这两种模式有望成为它们保持业务连续性的利器。
然而,不那么幸运的企业怎么办呢?如果员工因疫情受到隔离无法工作,这些企业也有现成的解决方案可以选择。
由于VDI和DaaS是基于云技术的解决方案,为团队、客户或合作伙伴建立虚拟工作空间通常只需不到一个小时。受到出行限制的员工只需使用网络浏览器,从家中就可以安全可靠地访问任何应用,而不需下载或升级软件。
对于智慧企业来说,这些解决方案的已见成效。
而对于其他企业来说,越早采用所需的现代化工具,让员工保持流动性和生产力,让业务在波动时期保持弹性,让经济在波动时期保持增长,就越能帮助巩固亚洲在全球经济中的重要地位。最后,让每个企业都能够为助力亚洲继续引领全球经济发展而贡献力量。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。