美国红十字会及其“缺失地图”项目(Missing Maps project),正与英特尔共同应用人工智能技术绘制发展中国家易受灾地区的地图,以帮助其防灾备灾。在2019年,英特尔数据科学家构建了一个计算机视觉模型,该模型能够识别乌干达卫星图像上先前未被标记的桥梁和道路。
“对红十字会的工作人员而言,在防灾规划和紧急响应过程中,精确的地理信息极其重要。但世界上有些地区还未被标记在地图上,这给防灾规划和灾害响应造成了极大的困难。正因如此,我们与英特尔携手,运用人工智能技术绘制易受灾地区的地图,标记道路、桥梁、建筑物和城市。”——Dale Kunce,“缺失地图”项目联合创始人、美国红十字会Cascades大区首席执行官
根据缺失地图项目的数据,世界各地每年有近2亿人受灾。很多灾区并未标记在地图上,这导致应急响应人员缺少必要的信息,以快速制定救灾决策。
卫星图像有时不易辨识,并且各个国家的桥梁和基础设施不尽相同。人工智能模型增强了制图能力,可以覆盖更广泛的区域,并捕捉人眼难以察觉的事物。例如,该模型在乌干达南部发现了70座桥梁,而这些桥梁在“开放街道地图”(OpenStreetMap)或乌干达统计局官方地图中均未找到。
这一计算机视觉模型运行在第二代英特尔至强可扩展处理器上,该处理器内置了英特尔深度学习加速技术(DL Boost)和nGraph编译器。
尽管英特尔并不享有该数据集的全部权利,但正在寻求将该数据集作为开源资源提供给研究者和地理空间专业人士的机会。此外,英特尔还将召开研讨会,探讨如何将卫星图像和AI技术用于人道主义实践,从而充分利用为该项目开发的数据集和代码库。
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。