美国红十字会及其“缺失地图”项目(Missing Maps project),正与英特尔共同应用人工智能技术绘制发展中国家易受灾地区的地图,以帮助其防灾备灾。在2019年,英特尔数据科学家构建了一个计算机视觉模型,该模型能够识别乌干达卫星图像上先前未被标记的桥梁和道路。
“对红十字会的工作人员而言,在防灾规划和紧急响应过程中,精确的地理信息极其重要。但世界上有些地区还未被标记在地图上,这给防灾规划和灾害响应造成了极大的困难。正因如此,我们与英特尔携手,运用人工智能技术绘制易受灾地区的地图,标记道路、桥梁、建筑物和城市。”——Dale Kunce,“缺失地图”项目联合创始人、美国红十字会Cascades大区首席执行官
根据缺失地图项目的数据,世界各地每年有近2亿人受灾。很多灾区并未标记在地图上,这导致应急响应人员缺少必要的信息,以快速制定救灾决策。
卫星图像有时不易辨识,并且各个国家的桥梁和基础设施不尽相同。人工智能模型增强了制图能力,可以覆盖更广泛的区域,并捕捉人眼难以察觉的事物。例如,该模型在乌干达南部发现了70座桥梁,而这些桥梁在“开放街道地图”(OpenStreetMap)或乌干达统计局官方地图中均未找到。
这一计算机视觉模型运行在第二代英特尔至强可扩展处理器上,该处理器内置了英特尔深度学习加速技术(DL Boost)和nGraph编译器。
尽管英特尔并不享有该数据集的全部权利,但正在寻求将该数据集作为开源资源提供给研究者和地理空间专业人士的机会。此外,英特尔还将召开研讨会,探讨如何将卫星图像和AI技术用于人道主义实践,从而充分利用为该项目开发的数据集和代码库。
好文章,需要你的鼓励
今年是AI智能体的爆发年。聊天机器人正演进为能代表用户执行任务的自主智能体,企业持续投资智能体平台。调研显示,超半数高管表示其组织已在使用AI智能体,88%在智能体上投入过半AI预算的公司已从至少一个用例中获得投资回报。Gartner预测,到2026年40%的企业软件应用将包含智能体AI,2035年智能体AI可能驱动约30%的企业应用软件收入。企业开始将AI智能体视为员工,建立招聘培训体系。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
谷歌的Nano Banana Pro AI模型生成的图像逼真度令人震惊,其关键在于完美模拟了手机相机的拍照特征。这些AI生成的图像具备手机拍照的典型特点:明亮平坦的曝光、较大的景深范围、略显粗糙的细节处理,甚至包含噪点。该模型还能自动添加符合情境的细节元素,如房产照片的水印等,使图像更加真实可信。这种技术进步意味着辨别AI生成内容变得更加困难。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。