Nvidia今天公布了一种新的分布式学习技术,该技术可以在训练机器学习模型的同时保护患者隐私,从而让人工智能成为医疗行业的一项不可缺少的技术。
人工智能有着广阔的发展前景,但对于医疗等行业而言,数据隐私至关重要,要挖掘这一潜力是个巨大的挑战。问题是,任何对训练模型有用处的数据几乎都是隐私数据,也就意味着不能将这些数据与合作伙伴进行共享。
Nvidia认为,可以通过最新的Clara Federated Learning技术解决此问题,该技术可以确保患者数据始终保留在医疗提供方的系统内。
Clara FL是一款用于分布式人工智能训练的参考应用,运行在Nvidia最新推出的EGX智能边缘计算平台上。这些系统能够在不移动数据的情况下,在数据所在的“网络边缘”本地地训练深度学习。
Nvidia医疗保健副总裁Kimberly Powell在博客中表示,Clara FL也具有协作性,也就是多个系统可以在不同位置协同工作,以创建更准确的全局模型。
Clara FL已经被美国放射学院、伦敦国王学院和加州大学洛杉矶分校(UCLA Health)等多家顶级医疗提供方的放射科医生使用。首先,放射科医生使用NVIDIA Clara AI-Assisted Annotation软件套件来标记数据,该套件与3D切片机、MITK、Fovia和Philips Intellispace Discovery等医学查看器集成在一起。
Powell表示:“NVIDIA AI可以使用预先训练的模型和转移学习技术,帮助放射科医生表及数据,从而将复杂3D的研究时间从数小时缩短至数分钟。”
然后,在Nvidia服务器上训练这些模型,通过安全链接共享把结果共享到联合学习中心。共享的只是这些结果,患者数据仍保留在原处,从而确保数据的安全性。
Powell在博客中写到:“Nvidia与英国伦敦国王学院以及Owkin展开合作,为国家卫生局创建联合学习平台。这个名为Owkin Connect的平台运行在NVIDIA Clara上,使算法能够从一个医院转移到另一家医院,并接受本地数据集的训练。该平台为每个医院都提供了一个区块链分布式的分类帐,可以捕获和跟踪用于模型训练的所有数据。”
Nvidia与Clara FL共同宣布推出了一个名为Clara AGX的新嵌入式AI开发者套件,该套件能够以很高的数据速率处理图像和视频,从而将AI推理和3D可视化功能嵌入到医疗设备中。
Nvidia低功耗Xavier片上系统为Nvidia AGX套件提供动力,该系统通常被作为自动驾驶汽车的微型处理器。目前,Nvidia AGX已经嵌入到便携式“ Hyperfine”磁共振成像设备中,可以进行早期测试,此外还可以与其他各种医疗器械、手术室、智能医疗摄像头和患者监护设备配合使用。
Powell表示:“我们正在见证医疗物联网开始采用人工智能技术。”
Nvidia方面表示,Clara AGX SDK将很快提供给早期访问用户。
好文章,需要你的鼓励
Microsoft 正在对 Windows 系统崩溃时显示的蓝屏 (BSOD) 进行重新设计。新设计简化了界面,保留了技术信息,旨在提高用户生产力恢复速度。新版 BSOD 移除了表情符号和二维码,但保留了错误代码和失败进程信息。这一变更反映了 Microsoft 对提升用户体验的持续关注。
CarMax 作为美国最大的二手车零售商,年收入超过 265 亿美元。在 Shamim Mohammad 的领导下,公司成功实现了数字化转型,成为汽车行业的领先者。通过建立强大的技术基础、优化数据策略、应用人工智能技术,以及采用产品运营模式,CarMax 正在重塑汽车零售的未来。Mohammad 的前瞻性领导力和对创新的不懈追求,使 CarMax 在数字化时代保持竞争优势。
数据中心对我们的数字生活至关重要,但也给环境带来负担。为应对生态挑战,数据中心正向可持续、可再生能源、高效技术和可回收材料转型。这一转变不仅符合日益严格的环保法规,还能为企业带来竞争优势。从"白色空间"到"绿色建筑"的转型,将提高运营效率,降低成本,减少碳排放,为行业树立可持续发展的典范。
Nvidia最近改变了GPU的定义方式,将单个芯片die视为一个GPU,而非之前的整个模块。这一变化可能导致Nvidia AI Enterprise许可证费用翻倍。新的HGX B300 NVL16系统现在被视为拥有16个GPU,而非8个,这可能使年度订阅费用从36,000美元增至72,000美元。Nvidia表示,这一改变源于技术原因,但也可能是为了增加软件订阅收入。