Nvidia今天公布了一种新的分布式学习技术,该技术可以在训练机器学习模型的同时保护患者隐私,从而让人工智能成为医疗行业的一项不可缺少的技术。
人工智能有着广阔的发展前景,但对于医疗等行业而言,数据隐私至关重要,要挖掘这一潜力是个巨大的挑战。问题是,任何对训练模型有用处的数据几乎都是隐私数据,也就意味着不能将这些数据与合作伙伴进行共享。
Nvidia认为,可以通过最新的Clara Federated Learning技术解决此问题,该技术可以确保患者数据始终保留在医疗提供方的系统内。
Clara FL是一款用于分布式人工智能训练的参考应用,运行在Nvidia最新推出的EGX智能边缘计算平台上。这些系统能够在不移动数据的情况下,在数据所在的“网络边缘”本地地训练深度学习。
Nvidia医疗保健副总裁Kimberly Powell在博客中表示,Clara FL也具有协作性,也就是多个系统可以在不同位置协同工作,以创建更准确的全局模型。
Clara FL已经被美国放射学院、伦敦国王学院和加州大学洛杉矶分校(UCLA Health)等多家顶级医疗提供方的放射科医生使用。首先,放射科医生使用NVIDIA Clara AI-Assisted Annotation软件套件来标记数据,该套件与3D切片机、MITK、Fovia和Philips Intellispace Discovery等医学查看器集成在一起。
Powell表示:“NVIDIA AI可以使用预先训练的模型和转移学习技术,帮助放射科医生表及数据,从而将复杂3D的研究时间从数小时缩短至数分钟。”
然后,在Nvidia服务器上训练这些模型,通过安全链接共享把结果共享到联合学习中心。共享的只是这些结果,患者数据仍保留在原处,从而确保数据的安全性。
Powell在博客中写到:“Nvidia与英国伦敦国王学院以及Owkin展开合作,为国家卫生局创建联合学习平台。这个名为Owkin Connect的平台运行在NVIDIA Clara上,使算法能够从一个医院转移到另一家医院,并接受本地数据集的训练。该平台为每个医院都提供了一个区块链分布式的分类帐,可以捕获和跟踪用于模型训练的所有数据。”
Nvidia与Clara FL共同宣布推出了一个名为Clara AGX的新嵌入式AI开发者套件,该套件能够以很高的数据速率处理图像和视频,从而将AI推理和3D可视化功能嵌入到医疗设备中。
Nvidia低功耗Xavier片上系统为Nvidia AGX套件提供动力,该系统通常被作为自动驾驶汽车的微型处理器。目前,Nvidia AGX已经嵌入到便携式“ Hyperfine”磁共振成像设备中,可以进行早期测试,此外还可以与其他各种医疗器械、手术室、智能医疗摄像头和患者监护设备配合使用。
Powell表示:“我们正在见证医疗物联网开始采用人工智能技术。”
Nvidia方面表示,Clara AGX SDK将很快提供给早期访问用户。
好文章,需要你的鼓励
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。
这项由中国人民大学高瓴人工智能学院研究团队发表的研究解决了大语言模型评判中的自我偏好问题。研究提出了DBG分数,通过比较模型给自身回答的分数与黄金判断的差异来测量偏好度,有效分离了回答质量与自我偏好偏差。实验发现,预训练和后训练模型都存在自我偏好,但大模型比小模型偏好度更低;调整回答风格和使用相同数据训练不同模型可减轻偏好。研究还从注意力分析角度揭示了自我偏好的潜在机制,为提高AI评判客观性提供了重要指导。
这篇研究提出了DenseDPO,一种改进视频生成模型的新方法,通过三大创新解决了传统方法中的"静态偏好"问题:使用结构相似的视频对进行比较,采集细粒度的时序偏好标注,并利用现有视觉语言模型自动标注。实验表明,DenseDPO不仅保留了视频的动态性,还在视觉质量方面与传统方法相当,同时大大提高了数据效率。这项技术有望推动AI生成更加自然、动态的视频内容。