NVIDIA Turing GPU与 NVIDIA Xavier在MLPerf数据中心与边缘AI推理性能基准测试中取得最快成绩
加利福尼亚州圣克拉拉市——2019年11月6日——NVIDIA于今日公布,其在最新测定数据中心与边缘AI推理工作负载性能的基准测试中取得最快成绩。NVIDIA在前不久的AI训练基准测试中也展现出同样强大的实力,为此次获胜奠定了基础。
MLPerf Inference 0.5是业内首个独立AI推理基测套件,其测试结果证明了NVIDIA Turing数据中心GPU以及NVIDIA Xavier边缘计算芯片系统的性能。
MLPerf的五项推理基准适用于一系列形式因素和四种推理场景,涵盖了图像分类、目标检测和翻译等已有的AI应用。
凭借Turing GPU所提供的目前市面上单处理器最高的性能,NVIDIA在全部五项针对于两种数据中心关注的场景(服务器和离线)的基准测试中均排在首位。Xavier则是市面上针对两种边缘场景(单流和多流)性能最高的边缘和移动芯片系统。
NVIDIA副总裁兼加速计算总经理Ian Buck表示:“AI正处于从研究阶段迅速转向大规模实际应用部署的临界点。AI推理是一项巨大的计算挑战。NVIDIA将业内最先进的可编程加速器CUDA-X AI算法套件与我们在AI计算领域的深厚知识相结合,能够帮助数据中心部署庞大且正在不断增长的复杂AI模型。”
由于重视其计算平台在各种AI工作负载中的可编程性与性能,因此NVIDIA是唯一一家提交了全部五项MLPerf基准测试结果的AI计算平台公司。此前七月,NVIDIA就曾在多项MLPerf 0.6 AI训练基准测试结果中胜出,在训练性能方面创造了八项纪录。
NVIDIA GPU在全球最大的云基础设施中为大型推理工作负载提供加速,这些云基础设施包括阿里云、AWS、谷歌云平台、微软Azure和腾讯等。目前,AI正在朝操作和数据生成点的边缘移动。沃尔玛、宝洁等全球首屈一指的企业和机构正使用NVIDIA EGX边缘计算平台与AI推理能力在边缘运行复杂的AI工作负载。
NVIDIA的所有MLPerf测试结果均采用NVIDIA TensorRT 6高性能深度学习推理软件获得。该软件能够在生产中轻松优化和部署数据中心、边缘等位置的AI应用。此外,GitHub库还以开源形式提供新的TensorRT优化。
为了扩展其推理平台,NVIDIA于今日宣布推出了Jetson Xavier NX。Jetson Xavier NX是全球体积最小、性能最强大的适用于边缘机器人和嵌入式计算设备的AI超级计算机,它是围绕MLPerf Inference 0.5基准测试中所使用的Xavier芯片系统所打造的低功耗版本。
好文章,需要你的鼓励
Colt科技服务公司推出超低延迟云连接服务Colt ULL DCA,专门面向加密货币交易商和AI应用开发企业的高速需求。该服务结合超低延迟网络和专用云接入平台,绕过公共互联网提供专用高速路径。在AWS亚洲区域测试中,平均延迟比原生路由降低15%。随着亚太地区数字资产交易成熟和AI需求爆发,企业对安全高性能连接需求激增,Colt正加速在东南亚扩张布局。
约翰霍普金斯大学研究团队开发了ETTIN模型套件,首次实现了编码器和解码器模型的公平比较。研究发现编码器擅长理解任务,解码器擅长生成任务,跨界训练效果有限。该研究为AI模型选择提供了科学依据,所有资料已开源供学术界使用。
皮尤研究中心最新分析显示,谷歌搜索结果页面的AI概述功能显著降低了用户对其他网站的点击率。研究发现,没有AI回答的搜索点击率为15%,而有AI概述的搜索点击率降至8%。目前约五分之一的搜索会显示AI概述,问题类搜索中60%会触发AI回答。尽管谷歌声称AI概述不会影响网站流量,但数据表明用户看到AI生成的信息后更容易结束浏览,这可能导致错误信息的传播。
博洛尼亚大学团队开发出情感增强的AI系统,通过结合情感分析和文本分类技术,显著提升了新闻文章中主观性表达的识别准确率。该研究覆盖五种语言,在多项国际评测中取得优异成绩,为打击虚假信息和提升媒体素养提供了新工具。