NVIDIA Turing GPU与 NVIDIA Xavier在MLPerf数据中心与边缘AI推理性能基准测试中取得最快成绩
加利福尼亚州圣克拉拉市——2019年11月6日——NVIDIA于今日公布,其在最新测定数据中心与边缘AI推理工作负载性能的基准测试中取得最快成绩。NVIDIA在前不久的AI训练基准测试中也展现出同样强大的实力,为此次获胜奠定了基础。
MLPerf Inference 0.5是业内首个独立AI推理基测套件,其测试结果证明了NVIDIA Turing数据中心GPU以及NVIDIA Xavier边缘计算芯片系统的性能。
MLPerf的五项推理基准适用于一系列形式因素和四种推理场景,涵盖了图像分类、目标检测和翻译等已有的AI应用。
凭借Turing GPU所提供的目前市面上单处理器最高的性能,NVIDIA在全部五项针对于两种数据中心关注的场景(服务器和离线)的基准测试中均排在首位。Xavier则是市面上针对两种边缘场景(单流和多流)性能最高的边缘和移动芯片系统。
NVIDIA副总裁兼加速计算总经理Ian Buck表示:“AI正处于从研究阶段迅速转向大规模实际应用部署的临界点。AI推理是一项巨大的计算挑战。NVIDIA将业内最先进的可编程加速器CUDA-X AI算法套件与我们在AI计算领域的深厚知识相结合,能够帮助数据中心部署庞大且正在不断增长的复杂AI模型。”
由于重视其计算平台在各种AI工作负载中的可编程性与性能,因此NVIDIA是唯一一家提交了全部五项MLPerf基准测试结果的AI计算平台公司。此前七月,NVIDIA就曾在多项MLPerf 0.6 AI训练基准测试结果中胜出,在训练性能方面创造了八项纪录。
NVIDIA GPU在全球最大的云基础设施中为大型推理工作负载提供加速,这些云基础设施包括阿里云、AWS、谷歌云平台、微软Azure和腾讯等。目前,AI正在朝操作和数据生成点的边缘移动。沃尔玛、宝洁等全球首屈一指的企业和机构正使用NVIDIA EGX边缘计算平台与AI推理能力在边缘运行复杂的AI工作负载。
NVIDIA的所有MLPerf测试结果均采用NVIDIA TensorRT 6高性能深度学习推理软件获得。该软件能够在生产中轻松优化和部署数据中心、边缘等位置的AI应用。此外,GitHub库还以开源形式提供新的TensorRT优化。
为了扩展其推理平台,NVIDIA于今日宣布推出了Jetson Xavier NX。Jetson Xavier NX是全球体积最小、性能最强大的适用于边缘机器人和嵌入式计算设备的AI超级计算机,它是围绕MLPerf Inference 0.5基准测试中所使用的Xavier芯片系统所打造的低功耗版本。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究由香港理工大学和新加坡国立大学的团队共同完成,提出了R?ec,首个将推理能力内置于大型推荐模型的统一框架。与传统方法不同,R?ec在单一自回归过程中实现了推理生成和物品预测的无缝整合。研究者还设计了RecPO优化框架,无需人工标注即可同时提升模型的推理和推荐能力。实验结果显示,R?ec在三个数据集上显著超越现有方法,在Hit@5和NDCG@20指标上分别提升68.67%和45.21%。这一突破为下一代智能推荐系统开辟了新方向。
这项研究提出了CURE框架,通过强化学习让大语言模型同时学习编写代码和生成单元测试两种能力,无需使用标准代码作为监督。团队开发的ReasonFlux-Coder模型在仅用4.5K编程问题训练后,便在多个基准测试中超越了同类模型,代码生成准确率提高5.3%,最佳N选1准确率提高9.0%。该方法不仅提升了模型性能,还提高了推理效率,同时为降低API调用成本和无标签强化学习提供了新思路。