NVIDIA Turing GPU与 NVIDIA Xavier在MLPerf数据中心与边缘AI推理性能基准测试中取得最快成绩
加利福尼亚州圣克拉拉市——2019年11月6日——NVIDIA于今日公布,其在最新测定数据中心与边缘AI推理工作负载性能的基准测试中取得最快成绩。NVIDIA在前不久的AI训练基准测试中也展现出同样强大的实力,为此次获胜奠定了基础。
MLPerf Inference 0.5是业内首个独立AI推理基测套件,其测试结果证明了NVIDIA Turing数据中心GPU以及NVIDIA Xavier边缘计算芯片系统的性能。
MLPerf的五项推理基准适用于一系列形式因素和四种推理场景,涵盖了图像分类、目标检测和翻译等已有的AI应用。
凭借Turing GPU所提供的目前市面上单处理器最高的性能,NVIDIA在全部五项针对于两种数据中心关注的场景(服务器和离线)的基准测试中均排在首位。Xavier则是市面上针对两种边缘场景(单流和多流)性能最高的边缘和移动芯片系统。
NVIDIA副总裁兼加速计算总经理Ian Buck表示:“AI正处于从研究阶段迅速转向大规模实际应用部署的临界点。AI推理是一项巨大的计算挑战。NVIDIA将业内最先进的可编程加速器CUDA-X AI算法套件与我们在AI计算领域的深厚知识相结合,能够帮助数据中心部署庞大且正在不断增长的复杂AI模型。”
由于重视其计算平台在各种AI工作负载中的可编程性与性能,因此NVIDIA是唯一一家提交了全部五项MLPerf基准测试结果的AI计算平台公司。此前七月,NVIDIA就曾在多项MLPerf 0.6 AI训练基准测试结果中胜出,在训练性能方面创造了八项纪录。
NVIDIA GPU在全球最大的云基础设施中为大型推理工作负载提供加速,这些云基础设施包括阿里云、AWS、谷歌云平台、微软Azure和腾讯等。目前,AI正在朝操作和数据生成点的边缘移动。沃尔玛、宝洁等全球首屈一指的企业和机构正使用NVIDIA EGX边缘计算平台与AI推理能力在边缘运行复杂的AI工作负载。
NVIDIA的所有MLPerf测试结果均采用NVIDIA TensorRT 6高性能深度学习推理软件获得。该软件能够在生产中轻松优化和部署数据中心、边缘等位置的AI应用。此外,GitHub库还以开源形式提供新的TensorRT优化。
为了扩展其推理平台,NVIDIA于今日宣布推出了Jetson Xavier NX。Jetson Xavier NX是全球体积最小、性能最强大的适用于边缘机器人和嵌入式计算设备的AI超级计算机,它是围绕MLPerf Inference 0.5基准测试中所使用的Xavier芯片系统所打造的低功耗版本。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。