谷歌今天发布了企业版TensorFlow开源人工智能框架,旨在创建运行机器学习、深度学习以及其他统计和预测分析工作负载。
TensorFlow框架简化了获取数据、训练模型、提供预测和完善未来结果的过程,常见用途包括训练用于图像识别和递归神经网络的算法,以及用于机器翻译和自然语言处理的序列到序列模型。
Google Cloud AI Platform产品管理总监Craig Wiley在美国加州圣塔克拉拉举行的O'Reilly TensorFlow World大会上宣布,TensorFlow Enterprise的发布对于满足那些需要纵向扩展机器学习项目的企业的“更高要求和期望”是很有必要的。
TensorFlow Enterprise客户将可以得到谷歌所谓的企业级支持,包括对较早版本框架的长期支持。尽管TensorFlow会定期更新,但并非所有人都能立即升级到最新版本。
Wiley在博客中补充说:“对于某些版本的TensorFlow,我们将提供长达三年的安全补丁以及部分漏洞修复。Google Cloud将支持这些版本,而且所有补丁和漏洞修复都将在主线TensorFlow代码存储库中提供。”
Wiley说,企业级支持还包括一项“白手套服务”,该服务由Google Cloud专家提供“工程师到工程师”的帮助。
TensorFlow Enterprise的另一个优点是让客户可以自信地进行扩展。Wiley说:“很多模型都是从一个想法开始的,部署在单节点内部,但扩展到云的性能潜力可能会令人犹豫。”
但对于TensorFlow Enterprise客户来说现在情况完全不同了,现在他们可以利用Google Cloud中的一系列计算选项,包括Deep Learning VM和Deep Learning Containers,这些选项采用了谷歌定制的、面向人工智能工作负载的Cloud Tensor Processing Units。
除了可扩展性之外,TensorFlow Enterprise客户还可以从轻松使用Google Cloud托管服务,包括Google Kubernetes Engine和Google AI Platform。
Constellation Research首席分析师兼副总裁Holger Mueller表示,TensorFlow Enterprise适合那些需要企业级安全性、稳定性、维护和支持的企业,而这正是提供三年维修支持的谷歌TensorFlow Enterprise所能做到的。”
Mueller说:“ 谷歌注重性能的同时,还同时支持Google TPU和Nvidia GPU。我们期待看看谷歌是否可以通过此举有效发挥自己作为开源社区TensorFlow原始提供方的优势。在这方面真正的竞争点在于以最快的速度和最低的成本提供AI洞察。”
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。