为促进医学研究、保护数据隐私以及改善患者脑肿瘤识别结果,NVIDIA携手伦敦国王学院(King’s College London)于近日推出了首个用于医学影像分析且具有隐私保护能力的联邦学习系统(federated learning system),标志着在医疗健康AI领域实现了突破性进展。
该技术论文在MICCAI大会召开期间发布——该会议于10月14日在中国深圳拉开帷幕,是全球最高端的医学影像会议之一。
NVIDIA与伦敦国王学院研究人员介绍了该技术的实施细节。
联邦学习(federated learning system)是一种能够让开发者与各企业机构利用分散在多个位置的训练数据对中心深度神经网络(DNN)进行训练的学习范式,该方法可以支持各企业机构针对共享模型开展协作,而无需共享任何临床数据。
研究人员在论文中阐述道:“联邦学习在无需共享患者数据的情况下,即可实现协作与分散化的神经网络训练。各节点负责训练其自身的本地模型,并定期提交给参数服务器。该服务器不断累积并聚合各自的贡献,进而创建一个全局模型,分享给所有节点。”
研究人员解释道,虽然联邦学习可以保证极高的隐私安全性,但通过模型反演,仍可以设法使数据重现。为了帮助提高联盟学习的安全性,研究人员研究试验了使用ε-差分隐私框架的可行性。该框架是一种正式定义隐私损失的方法,该方法可以借助其强大的隐私保障性来保护患者与机构数据。
上述突破性试验是基于取自BraTS 2018数据集的脑肿瘤分割数据实施的。BraTS 2018数据集包含有285位脑肿瘤患者的MRI扫描结果。
该数据集旨在评估面向多模态与多级分割任务的联邦学习算法。在客户端一侧,研究团队改写了一个原本用于数据集中式训练的一流训练管道,并将其用作NVIDIA Clara Train SDK的一部分。
此外,研究团队还将NVIDIA V100 Tensor Core GPU用于训练与推理。
相比于数据集中式系统,联邦学习所提供的方法可以在不共享机构数据的情况下实现相当大的分割性能。此外,试验结果显示,隐私保护与受训模型质量之间产生了自然折中。而且,通过使用稀疏向量技术,联盟学习系统可以实现严格隐私保护,且对模型性能仅产生合理的轻微影响。
深度学习是一种从医学数据中自动提取知识的强大技术。联邦学习有望有效聚合各机构从私有数据中本地习得的知识,从而进一步提高深度模型的准确性、稳健性与通用化能力。
此项研究为部署安全联邦学习方面做出了巨大的推动,并将广泛推动数据驱动型精准医学的进步。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。