Nvidia发布了用于高性能深度学习推理的新版本TensorRT软件平台,以强化自己的人工智能战略。
TensorRT是一个将高性能深度学习推理优化器与运行时相结合的平台,可为AI应用提供低延迟、高吞吐量的推理。
推理是AI的一个重要方面,AI训练涉及算法理解数据集的能力演化,而推理是指AI能够对这些数据进行操作以推断特定查询的答案。
新版本的TensorRT在性能方面有了显着改善,包括大幅缩短了在最先进AI语言模型之一——Bidirectional Encoder Representations from Transformers -Large(BERT-Large)——上的推理时间。众所周知,BERT-Large是一种自然语言处理训练方法,涉及在大型文本语料库(如维基百科)上训练通用语言理解模型,然后把该模型作为下游NLP任务的基础,例如回答人们的问题。
Nvidia表示,TensorRT 6新增的优化功能可以将B44与T4 GPU的算法推理时间缩短至5.8毫秒,低于之前的10毫秒性能阈值。
Nvidia表示,这次改进的性能足够高,使得BERT可以被企业首次部署到生产环境中。传统观点认为,应该在不到10毫秒的时间内执行NLP模型,才能提供自然的、引人入胜的体验。
Nvidia表示,还对该平台进行了优化,加速了对于语音识别、医疗应用3D图像分割、工业自动化中基于图像的应用相关任务的推断。
Nvidia表示,TensorRT 6还增加了对动态输入批大小的支持,这有助于加速AI应用,例如计算需求波动的在线服务等。TensorRT Open Source Repository 也有升级,新增的训练样本有助于加快基于语言和图像的应用的推断。
Constellation Research分析师Holger Mueller表示,这次改进很及时,因为会话AI平台的竞争正在全面展开。
“但是Nvidia仍然需要解决下一代应用的本地部署问题,除非它设法将TensorRT平台变成公有云。在这方面Nvidia有很好的经验,但需要一定的时间才能实现。”
Nvidia表示,现在已经可以通过产品页面下载TensorRT 6平台。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。