Nvidia发布了用于高性能深度学习推理的新版本TensorRT软件平台,以强化自己的人工智能战略。
TensorRT是一个将高性能深度学习推理优化器与运行时相结合的平台,可为AI应用提供低延迟、高吞吐量的推理。
推理是AI的一个重要方面,AI训练涉及算法理解数据集的能力演化,而推理是指AI能够对这些数据进行操作以推断特定查询的答案。
新版本的TensorRT在性能方面有了显着改善,包括大幅缩短了在最先进AI语言模型之一——Bidirectional Encoder Representations from Transformers -Large(BERT-Large)——上的推理时间。众所周知,BERT-Large是一种自然语言处理训练方法,涉及在大型文本语料库(如维基百科)上训练通用语言理解模型,然后把该模型作为下游NLP任务的基础,例如回答人们的问题。
Nvidia表示,TensorRT 6新增的优化功能可以将B44与T4 GPU的算法推理时间缩短至5.8毫秒,低于之前的10毫秒性能阈值。
Nvidia表示,这次改进的性能足够高,使得BERT可以被企业首次部署到生产环境中。传统观点认为,应该在不到10毫秒的时间内执行NLP模型,才能提供自然的、引人入胜的体验。
Nvidia表示,还对该平台进行了优化,加速了对于语音识别、医疗应用3D图像分割、工业自动化中基于图像的应用相关任务的推断。
Nvidia表示,TensorRT 6还增加了对动态输入批大小的支持,这有助于加速AI应用,例如计算需求波动的在线服务等。TensorRT Open Source Repository 也有升级,新增的训练样本有助于加快基于语言和图像的应用的推断。
Constellation Research分析师Holger Mueller表示,这次改进很及时,因为会话AI平台的竞争正在全面展开。
“但是Nvidia仍然需要解决下一代应用的本地部署问题,除非它设法将TensorRT平台变成公有云。在这方面Nvidia有很好的经验,但需要一定的时间才能实现。”
Nvidia表示,现在已经可以通过产品页面下载TensorRT 6平台。
好文章,需要你的鼓励
Colt科技服务公司推出超低延迟云连接服务Colt ULL DCA,专门面向加密货币交易商和AI应用开发企业的高速需求。该服务结合超低延迟网络和专用云接入平台,绕过公共互联网提供专用高速路径。在AWS亚洲区域测试中,平均延迟比原生路由降低15%。随着亚太地区数字资产交易成熟和AI需求爆发,企业对安全高性能连接需求激增,Colt正加速在东南亚扩张布局。
约翰霍普金斯大学研究团队开发了ETTIN模型套件,首次实现了编码器和解码器模型的公平比较。研究发现编码器擅长理解任务,解码器擅长生成任务,跨界训练效果有限。该研究为AI模型选择提供了科学依据,所有资料已开源供学术界使用。
皮尤研究中心最新分析显示,谷歌搜索结果页面的AI概述功能显著降低了用户对其他网站的点击率。研究发现,没有AI回答的搜索点击率为15%,而有AI概述的搜索点击率降至8%。目前约五分之一的搜索会显示AI概述,问题类搜索中60%会触发AI回答。尽管谷歌声称AI概述不会影响网站流量,但数据表明用户看到AI生成的信息后更容易结束浏览,这可能导致错误信息的传播。
博洛尼亚大学团队开发出情感增强的AI系统,通过结合情感分析和文本分类技术,显著提升了新闻文章中主观性表达的识别准确率。该研究覆盖五种语言,在多项国际评测中取得优异成绩,为打击虚假信息和提升媒体素养提供了新工具。