大多数人对Uber在人工智能领域的认知可能都来自于自动驾驶,但实际上Uber在人工智能底层技术上也有卓越的贡献,其开源的分布式深度学习框架Horovod是世界上最优秀的人工智能训练加速框架之一,数以万计的人工智能开发者和组织从中受益。8月28日,在北京举行的2019人工智能计算大会(AICC2019)上,Uber深度学习平台经理宁旭将在大会主论坛上分享如何更好的使用Horovod加速AI模型训练。
Horovod实质上是Uber开发并开源的一套先进的分布式系统,它并不依赖于某个框架,而是采用目前业界广泛认可的基于环形All-reduce通信的同步SGD算法,通过计算与通信异步、梯度合并、梯度压缩等设备间通信优化手段,完成allreduce、allgather等集体操作通信工作。这一特性使得Horovod可以非常方便地与主流深度学习框架TensorFlow、PyTorch、 MXNet等进行匹配,在大规模GPU集群上的训练性能远高于原生框架的训练性能,提供非常高效的分布式训练性能加速。Horovod的另一大优点在于其提供的接口极为简单,用户只需修改几行代码,就可实现显著的训练性能提升。
Horovod之所以受到越来越多AI开发者与研究机构的青睐,其背后的原因在于越来越多的机器学习模型对数据和计算能力需求急剧增加。在大部分情况下,AI模型可以在单个或多GPU平台的服务器上运行,但随着数据集的增大和训练时间的增长,有时训练需要一周甚至更长时间。因此,AI开发者们不得不寻求分布式训练方法来缩短模型训练的时间。
Uber目前已经将深度学习应用到了很多公司业务中,从自动驾驶搜索路线到防御欺诈等。Uber深度学习平台经理宁旭认为,训练现代复杂的深度学习模型需要大量的计算。将计算扩展到多个GPU面临两大挑战:低成本、高效的GPU间通信库,以及用户代码可能会出现较大的更改。而Horovod成功地解决了这两大难题。
在AICC2019上,宁旭将带来《利用Horovod进行分布式深度学习》的主题演讲,不仅将现场分享如何通过Horovod在TensorFlow、Keras、PyTorch和MXNet中实现更快、更轻松的分布式训练,讲解Horovod的操作方法,同时也将披露Uber最近在橡树岭国家实验室进行的一项案例研究,讲述Horovod在世界上最快的超级计算机上实现百亿亿级计算。
宁旭曾带领Uber大数据和基础设施领域的团队负责一些开源项目,在机器学习、深度学习、大数据和大规模计算、网络、存储问题方面有丰富的经验。在加入Uber之前,宁旭曾在Facebook、Akamai和Microsoft以及几家初创公司工作。
本届AICC 2019可谓精彩纷呈,核心板块为主论坛与自动驾驶、产业AI创新、AI计算与基准测试、AI+视觉计算、AI+创投五大主题论坛,其中主论坛嘉宾云集了来自中国工程院、英国皇家工程院、百度、中国新一代人工智能发展战略研究院、浪潮、Facebook等机构的AI产学研顶尖专家学者,共聚一堂解读AI产业趋势,分享前沿AI计算技术。大会同期举行的AI千人训练营将邀请百度、平安科技、浪潮的资深AI工程师讲解最新AI计算技术与应用,帮助学员从零入门AI。
好文章,需要你的鼓励
AWS在纽约峰会上发布Amazon Bedrock AgentCore,这是一个企业级AI代理构建、部署和运营平台。该平台支持开源框架如CrewAI、LangChain等,提供运行时、内存、身份管理、可观测性等核心服务。Box、巴西伊塔乌银行等企业已开始使用该平台构建生产级应用。平台采用按需付费模式,目前在部分AWS区域提供预览版,2025年9月16日前免费试用。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
网约车巨头Uber宣布与中国科技公司百度达成多年战略合作,计划在美国和中国以外地区推出数千辆自动驾驶出租车。服务将从今年晚些时候开始,首先在亚洲和中东的未指定国家推出。百度的Apollo自动驾驶汽车已在中国11个城市运营,成本仅为3.7万美元,远低于行业平均的20万美元。用户可选择乘坐自动驾驶车辆或人工驾驶车辆。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。