英特尔今天在以色列海法的一次特别活动中,悄然推出了首款专用人工智能处理器。
这款名为Nervana Neural Network Processor for Inference的处理器(也称为Springhil),是在位于海法的英特尔实验室开发的,据称是专为运行人工智能工作负载的大型数据中心设计的。据路透社报道,它基于改进的10纳米Ice Lake处理器,能够处理密集型工作负载,同时能耗极少。
英特尔表示,包括Facebook在内的多家客户已经开始在他们的数据中心使用该芯片。
Nervana NNP-I芯片是英特尔“AI无处不在”战略的一个组成部分。英特尔采用GPU、FPGA以及定制的ASIC来处理人工智能中的各种复杂任务,包括创建用于语音翻译和对象识别神经网络,以及通过推理过程运行训练模型。
Nervana NNP-I芯片足够小,可以通过所谓的M.2存储设备部署在数据中心,然后插入主板标准的M.2端口。这样就可以让英特尔标准的至强处理器从推理工作负载中脱离,更专注于一般性的计算任务。
Moor Insights&Strategy分析师Patrick Moorhead表示:“大多数推理工作负载都是在CPU上运行完成的,即便是像Nvidia T系列这样的加速器可以提供更高的性能。当延迟无关紧要而原始性能更重要的时候,则首选是加速器。英特尔的Nervana NNP-I旨在与Nvidia甚至Xilinx FPGA这样的分立加速器展开竞争。”
英特尔表示,Nervana NNP-I芯片实际上是改进版的10纳米Ice Lake芯片,带有两个计算机核心,图形引擎被剥离以容纳12个推理计算引擎,这些目的都是为了加速推理过程,也就是针对语音和图像识别等任务实施经过训练的神经网络模型。
Constellation Research分析师Holger Mueller表示,这对英特尔来说是一次重要的发布,因为此前英特尔在人工智能推理方面基本处于观望状态。
Mueller说:“英特尔正在提升在能耗和存储方面的能力,并在处理器套件中寻求协同效应。由于Springhill是通过M2设备和端口部署的,这在几十年前称为协同处理器,这有效地卸载了至强处理器。但我们必须等待,看看Springhill能否与更专业的、通常是基于GPU的处理器架构相抗衡。”
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。