英特尔今天在以色列海法的一次特别活动中,悄然推出了首款专用人工智能处理器。
这款名为Nervana Neural Network Processor for Inference的处理器(也称为Springhil),是在位于海法的英特尔实验室开发的,据称是专为运行人工智能工作负载的大型数据中心设计的。据路透社报道,它基于改进的10纳米Ice Lake处理器,能够处理密集型工作负载,同时能耗极少。
英特尔表示,包括Facebook在内的多家客户已经开始在他们的数据中心使用该芯片。
Nervana NNP-I芯片是英特尔“AI无处不在”战略的一个组成部分。英特尔采用GPU、FPGA以及定制的ASIC来处理人工智能中的各种复杂任务,包括创建用于语音翻译和对象识别神经网络,以及通过推理过程运行训练模型。
Nervana NNP-I芯片足够小,可以通过所谓的M.2存储设备部署在数据中心,然后插入主板标准的M.2端口。这样就可以让英特尔标准的至强处理器从推理工作负载中脱离,更专注于一般性的计算任务。
Moor Insights&Strategy分析师Patrick Moorhead表示:“大多数推理工作负载都是在CPU上运行完成的,即便是像Nvidia T系列这样的加速器可以提供更高的性能。当延迟无关紧要而原始性能更重要的时候,则首选是加速器。英特尔的Nervana NNP-I旨在与Nvidia甚至Xilinx FPGA这样的分立加速器展开竞争。”
英特尔表示,Nervana NNP-I芯片实际上是改进版的10纳米Ice Lake芯片,带有两个计算机核心,图形引擎被剥离以容纳12个推理计算引擎,这些目的都是为了加速推理过程,也就是针对语音和图像识别等任务实施经过训练的神经网络模型。
Constellation Research分析师Holger Mueller表示,这对英特尔来说是一次重要的发布,因为此前英特尔在人工智能推理方面基本处于观望状态。
Mueller说:“英特尔正在提升在能耗和存储方面的能力,并在处理器套件中寻求协同效应。由于Springhill是通过M2设备和端口部署的,这在几十年前称为协同处理器,这有效地卸载了至强处理器。但我们必须等待,看看Springhill能否与更专业的、通常是基于GPU的处理器架构相抗衡。”
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。