NVIDIA加速计算平台和Red Hat OpenShift 4联手助力加速用于AI和数据科学的本地Kubernetes部署
对于希望能够更快将GPU加速的AI和数据科学项目投入运行的企业来说,如今想实现这样的目标,更加容易了。
在近日举行的红帽峰会上,NVIDIA和红帽(Red Hat)推出了由NVIDIA GPU加速计算平台和红帽最新发布的Red Hat OpenShift 4相结合的组合产品,从而为用于AI和数据科学的Kubernetes本地部署提供加速。
成果:过去需要IT管理员耗费大半天时间才能完成的Kubernete管理任务,如今在一个小时内就能完成。
如今,越来越多企业开始依靠AI和数据科学,将大量数据转化为具有可操作性的情报,正是这样的需求催生了此项合作的诞生。
然而,真正有价值意义的AI和数据分析工作,需要通过GPU计算来加速整个企业级IT软件堆栈:从NVIDIA驱动程序到容器运行时间、再到应用程序框架,每一层的软件都需要进行优化。
NVIDIA的CUDA并行计算架构和CUDA-X加速库受到了超过120万开发者的青睐,从AI到高性能计算再到VDI,可用于加速众多领域的应用程序。
而且无论是笔记本电脑还是数据中心,亦或是在云端, NVIDIA的通用架构能够在任何你能够想象得到的计算设备上运行 ,因此对GPU加速应用程序进行投资的合理性也就显而易见了。
然而,加速AI和数据科学工作负载只是第一步。对于IT部门来说,在大型GPU加速的数据中心上以正确的方式部署优化型软件堆栈,是一件既耗时又令人头痛的事情。而这正是NVIDIA与红帽此次合作所致力解决的点。
Red Hat OpenShift是业内领先的企业级Kubernetes平台。先进的OpenShift 4能够把在集群中部署Kubernetes的工作变得前所未有的简单。特别值得一提的是红帽的Kubernetes 运算符,红帽对其投入甚多,它能够将许多例行的数据中心管理工作和应用程序生命周期管理任务转为自动化管理,从而降低管理复杂性。
NVIDIA一直在开发自己的GPU运算符,从而将早前大量需要IT经理通过shell脚本来完成的工作实现自动化,例如安装设备驱动程序,确保数据中心所有节点上都有正确的GPU容器运行时间,并监控GPU。
通过NVIDIA与红帽的合作,只要设置了集群,您只需运行GPU运算符即可将必要的依赖项添加到集群中的工作节点上,就这么简单。而且,因为它能够启动新的云资源,这让企业机构能够轻松地使用OpenShift 4来启动并运行基于GPU的数据中心群集。
在红帽峰会上,NVIDIA在1039号展台展示了如何使用OpenShift和GPU运算符来轻松设置裸机GPU集群。
此外,红帽首席技术官Chris Wright在峰会现场发表了精彩的主题演讲,NVIDIA计算软件副总裁Chris Lamb也与他同台,展示了我们的技术是如何协同工作的,并对双方的对合作展开了更进一步详细探讨。
红帽和NVIDIA诚邀我们共同的客户参与“白手套”早期试用计划。欲了解更多信息或参与早期试用访问计划的客户可在https://www.openshift.com/accelerated-ai上注册。
好文章,需要你的鼓励
英国宠物慈善机构PDSA数据显示,超过半数宠物主担心无法承担兽医费用。科技公司正通过AI和物联网技术解决这一市场需求。在伦敦兽医展上,多家初创公司展示了创新技术:AI for Pet利用视觉AI分析宠物眼部、皮肤等图像提供健康洞察;Sylvester.ai开发AI模型识别猫咪疼痛表情;VEA整合患者数据自动化诊断。此外,智能项圈等物联网设备可追踪宠物健康症状。这些技术有助于宠物主采取预防措施,降低兽医费用。
卡内基梅隆大学联合Adobe开发出革命性的NP-Edit技术,首次实现无需训练数据对的AI图像编辑。该技术通过视觉语言模型的语言反馈指导和分布匹配蒸馏的质量保障,让AI仅用4步就能完成传统50步的编辑任务,在保持高质量的同时大幅提升处理速度,为图像编辑技术的普及应用开辟了全新道路。
北欧国家启动统一人工智能产业计划,旨在通过合作在全球舞台上竞争,获得微软和谷歌支持。10月成立的新北欧AI中心获得350万英镑初始预算,但谷歌和微软是唯一提供资金支持的科技公司,具体金额保密。该中心将开发生成式AI系统并建设应用AI服务的系统。北欧教育部长承诺追加资金开发大型北欧语言生成AI模型。尽管资金有限,但北欧国家希望通过联合力量在AI竞赛中提升地位。
复旦大学团队突破AI人脸生成"复制粘贴"痛点,开发WithAnyone模型解决传统AI要么完全复制参考图像、要么身份差异过大的问题。通过MultiID-2M大规模数据集和创新训练策略,实现保持身份一致性的同时允许自然变化,为AI图像生成技术树立新标杆。