谷歌今天宣布对其云平台进行扩展,发布了一个新的基础设施选项Cloud TPU Pod,旨在满足那些需要大量计算能力的大型人工智能项目。
Cloud TPU Pod本质上是一组运行在谷歌数据中心中的服务器机架,每个机架都配备了谷歌的Tensor处理器单元(TPU)——完全为AI应用开发的定制芯片。谷歌已经在内部一系列服务中采用了这种芯片,包括谷歌的搜索引擎和谷歌翻译等。
此前TPU在Google Cloud上仅供单独租赁使用。与企业通常在AI项目中使用的GPU相比,TPU具有速度更快等诸多优势。去年12月公布的一项基准测试结果显示,在执行某些类型的任务时,TPU的性能比Nvidia同类硬件高出19%。
单个Cloud TPU Pod中包含256个或者1024个芯片,具体取决于配置。256个芯片的版本采用了谷歌在2017年推出的第二代TPU,峰值速度为11.5 petaflops。1024个芯片的版本采用了谷歌新推出的第三代TPU,峰值速度可达到107.5 petaflops。
这些性能数据表明该产品主要针对高性能计算机领域。目前全球最强大的超级计算机Summit峰值速度为200 petaflops。
事实上,Cloud TPU Pod在处理复杂性低于Summit等系统的数据时才能达到峰值性能,但总的来说它仍然是很强大的。谷歌通过API向用户提供Cloud TPU Pod,这样AI团队就可以像使用一个逻辑单元那样使用Cloud TPU Pod了,或者开发人员可以把一个Cloud TPU Pod的计算能力分散到多个应用中。
谷歌Cloud TPU高级产品经理Zak Stone在一篇博客文章中这样写道:“用户还可以使用更小‘切片’的Cloud TPU Pod。我们经常会看到ML团队在单独的Cloud TPU上开发他们最初的初始模型,然后通过数据并行和模型并行扩展到越来越大的Cloud TPU Pod切片。”
Cloud TPU Pod目前还处于测试阶段,早期客户包括eBay和总部位于犹他州的生物科技公司Recursion Pharmaceutical——该公司使用Cloud TPU Pod在对具有潜在医疗价值的分子进行测试。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。