近日起,Google Cloud 面向全球各地推出NVIDIA T4 GPU,为包括高性能计算(HPC)、机器学习训练及推理、数据分析和图形处理等在内的各类云工作负载提供加速。今年1月,Google Cloud宣布推出了NVIDIA T4 GPU公测版,帮助客户以更快的速度和更低的成本运行推理工作负载。今年四月早些时候,在Google Next '19上,Google Cloud宣布在八个地区率先推出NVIDIA T4,使Google Cloud成为全球第一家基于NVIDIA T4提供服务的主要供应商。
每个T4 GPU都拥有16 GB的GPU内存,提供多精度(或数据类型)支持(FP32,FP16,INT8和INT4),具有可为训练提供加速的NVIDIA Tensor核心,以及可用于更快速的光线追踪的RTX硬件加速平台。用户可以使用四个T4 GPU、96个vCPU、624 GB主机内存和高达3 TB的服务器本地SSD,来搭建最能满足其需求的自定义VM配置。
自发布之时,在抢占式VM实例上,T4实例的售价仅为每GPU每小时0.29美元。按需实例的售价为每GPU每小时0.95美元起,而且持续使用还可享受高达30%的折扣。
凭借NVIDIA Turing架构,T4 GPU引入了第二代Tensor核心。Tensor 核心首次亮相于NVIDIA V100 GPU之上(Google Cloud平台(GCP)也提供基于NVIDIA V100 GPU的服务),支持混合精度,可以为在机器学习工作负载中普遍采用的矩阵乘法运算提供加速。如果您的训练工作量还未达到需要使用功能更加强大的V100的程度,那么T4将能够以更低的价格为您提供Tensor 核心的加速优势。T4非常适合应用于大规模训练工作负载中,特别是当您扩展更多资源来加快训练或训练更大的模型的时候。
Tensor核心也可以为推理提供加速,或运用机器学习模型加速生成预测,以实现低延迟或高吞吐量。当以混合精度启用Tensor核心时,与仅以FP32运行相比,借助于TensorRT, GCP上的T4 GPU可以将ResNet-50的推理速度提高10倍以上。受益于全球供货和谷歌的高速网络,GCP上的NVIDIA T4能够以高性价比,为那些需要高效运作的全球性服务供应商提供服务。例如,Snap就在使用NVIDIA T4为其全球用户群创建更有效的算法的同时,保持了低成本。
借助于Google Cloud上的深度学习VM镜像(Deep Learning VM images),可以在NVIDIA T4 GPU上快速启动和运行机器学习模型的训练和服务推理工作负载。这些应用包括了您需要的所有软件:驱动程序,CUDA-X AI库,以及主流AI框架,如TensorFlow和PyTorch。此外,Google Cloud会为您进行软件更新,使您不必再为了兼容性和性能优化的问题额外费心。您只需创建一个新的Compute Engine实例,选择您的镜像,单击Start,几分钟后,您就可以访问和启用您的由T4赋能的实例。您也可以在Google Cloud的AI平台上启动您的实例,这是一个端到端的开发环境,可帮助机器学习开发人员和数据科学家在任何地方构建、共享和运行机器学习应用程序。一旦准备就绪,只需几行代码,您就可以借助于Tensor核心的自动混合精度实现加速。
NVIDIA T4 GPU还能为HPC批量计算和渲染工作负载带来卓越的性能和效率,将大规模部署的效用价值最大化。
T4 GPU也是运行虚拟工作站的绝佳选择,能够为工程师和专业创意人员提供支持。借助于GCP Marketplace中的NVIDIA Quadro虚拟工作站,用户可以运行基于NVIDIA RTX平台的应用程序,能在任何地方体验新一代计算机图形技术,包括实时光线追踪和AI增强型图形,以及视频和图像处理。
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。