近日起,Google Cloud 面向全球各地推出NVIDIA T4 GPU,为包括高性能计算(HPC)、机器学习训练及推理、数据分析和图形处理等在内的各类云工作负载提供加速。今年1月,Google Cloud宣布推出了NVIDIA T4 GPU公测版,帮助客户以更快的速度和更低的成本运行推理工作负载。今年四月早些时候,在Google Next '19上,Google Cloud宣布在八个地区率先推出NVIDIA T4,使Google Cloud成为全球第一家基于NVIDIA T4提供服务的主要供应商。
每个T4 GPU都拥有16 GB的GPU内存,提供多精度(或数据类型)支持(FP32,FP16,INT8和INT4),具有可为训练提供加速的NVIDIA Tensor核心,以及可用于更快速的光线追踪的RTX硬件加速平台。用户可以使用四个T4 GPU、96个vCPU、624 GB主机内存和高达3 TB的服务器本地SSD,来搭建最能满足其需求的自定义VM配置。
自发布之时,在抢占式VM实例上,T4实例的售价仅为每GPU每小时0.29美元。按需实例的售价为每GPU每小时0.95美元起,而且持续使用还可享受高达30%的折扣。
凭借NVIDIA Turing架构,T4 GPU引入了第二代Tensor核心。Tensor 核心首次亮相于NVIDIA V100 GPU之上(Google Cloud平台(GCP)也提供基于NVIDIA V100 GPU的服务),支持混合精度,可以为在机器学习工作负载中普遍采用的矩阵乘法运算提供加速。如果您的训练工作量还未达到需要使用功能更加强大的V100的程度,那么T4将能够以更低的价格为您提供Tensor 核心的加速优势。T4非常适合应用于大规模训练工作负载中,特别是当您扩展更多资源来加快训练或训练更大的模型的时候。
Tensor核心也可以为推理提供加速,或运用机器学习模型加速生成预测,以实现低延迟或高吞吐量。当以混合精度启用Tensor核心时,与仅以FP32运行相比,借助于TensorRT, GCP上的T4 GPU可以将ResNet-50的推理速度提高10倍以上。受益于全球供货和谷歌的高速网络,GCP上的NVIDIA T4能够以高性价比,为那些需要高效运作的全球性服务供应商提供服务。例如,Snap就在使用NVIDIA T4为其全球用户群创建更有效的算法的同时,保持了低成本。
借助于Google Cloud上的深度学习VM镜像(Deep Learning VM images),可以在NVIDIA T4 GPU上快速启动和运行机器学习模型的训练和服务推理工作负载。这些应用包括了您需要的所有软件:驱动程序,CUDA-X AI库,以及主流AI框架,如TensorFlow和PyTorch。此外,Google Cloud会为您进行软件更新,使您不必再为了兼容性和性能优化的问题额外费心。您只需创建一个新的Compute Engine实例,选择您的镜像,单击Start,几分钟后,您就可以访问和启用您的由T4赋能的实例。您也可以在Google Cloud的AI平台上启动您的实例,这是一个端到端的开发环境,可帮助机器学习开发人员和数据科学家在任何地方构建、共享和运行机器学习应用程序。一旦准备就绪,只需几行代码,您就可以借助于Tensor核心的自动混合精度实现加速。
NVIDIA T4 GPU还能为HPC批量计算和渲染工作负载带来卓越的性能和效率,将大规模部署的效用价值最大化。
T4 GPU也是运行虚拟工作站的绝佳选择,能够为工程师和专业创意人员提供支持。借助于GCP Marketplace中的NVIDIA Quadro虚拟工作站,用户可以运行基于NVIDIA RTX平台的应用程序,能在任何地方体验新一代计算机图形技术,包括实时光线追踪和AI增强型图形,以及视频和图像处理。
好文章,需要你的鼓励
皮尤研究中心最新分析显示,谷歌搜索结果页面的AI概述功能显著降低了用户对其他网站的点击率。研究发现,没有AI回答的搜索点击率为15%,而有AI概述的搜索点击率降至8%。目前约五分之一的搜索会显示AI概述,问题类搜索中60%会触发AI回答。尽管谷歌声称AI概述不会影响网站流量,但数据表明用户看到AI生成的信息后更容易结束浏览,这可能导致错误信息的传播。
约翰霍普金斯大学研究团队开发了ETTIN模型套件,首次实现了编码器和解码器模型的公平比较。研究发现编码器擅长理解任务,解码器擅长生成任务,跨界训练效果有限。该研究为AI模型选择提供了科学依据,所有资料已开源供学术界使用。
GlobalData研究显示,人工智能驱动的预测性维护正成为电力行业追求高可靠性和成本效益的关键组成部分。该技术结合数据分析、机器学习和实时监控,能够更准确预测设备未来状况,有望降低维护成本30%,提高设备可用性20%。GE Vernova、西门子等公司提供先进解决方案,而数字孪生技术、物联网和边缘计算等新兴技术正进一步提升维护策略的准确性和效率。
博洛尼亚大学团队开发出情感增强的AI系统,通过结合情感分析和文本分类技术,显著提升了新闻文章中主观性表达的识别准确率。该研究覆盖五种语言,在多项国际评测中取得优异成绩,为打击虚假信息和提升媒体素养提供了新工具。