近日起,Google Cloud 面向全球各地推出NVIDIA T4 GPU,为包括高性能计算(HPC)、机器学习训练及推理、数据分析和图形处理等在内的各类云工作负载提供加速。今年1月,Google Cloud宣布推出了NVIDIA T4 GPU公测版,帮助客户以更快的速度和更低的成本运行推理工作负载。今年四月早些时候,在Google Next '19上,Google Cloud宣布在八个地区率先推出NVIDIA T4,使Google Cloud成为全球第一家基于NVIDIA T4提供服务的主要供应商。
每个T4 GPU都拥有16 GB的GPU内存,提供多精度(或数据类型)支持(FP32,FP16,INT8和INT4),具有可为训练提供加速的NVIDIA Tensor核心,以及可用于更快速的光线追踪的RTX硬件加速平台。用户可以使用四个T4 GPU、96个vCPU、624 GB主机内存和高达3 TB的服务器本地SSD,来搭建最能满足其需求的自定义VM配置。
自发布之时,在抢占式VM实例上,T4实例的售价仅为每GPU每小时0.29美元。按需实例的售价为每GPU每小时0.95美元起,而且持续使用还可享受高达30%的折扣。
凭借NVIDIA Turing架构,T4 GPU引入了第二代Tensor核心。Tensor 核心首次亮相于NVIDIA V100 GPU之上(Google Cloud平台(GCP)也提供基于NVIDIA V100 GPU的服务),支持混合精度,可以为在机器学习工作负载中普遍采用的矩阵乘法运算提供加速。如果您的训练工作量还未达到需要使用功能更加强大的V100的程度,那么T4将能够以更低的价格为您提供Tensor 核心的加速优势。T4非常适合应用于大规模训练工作负载中,特别是当您扩展更多资源来加快训练或训练更大的模型的时候。
Tensor核心也可以为推理提供加速,或运用机器学习模型加速生成预测,以实现低延迟或高吞吐量。当以混合精度启用Tensor核心时,与仅以FP32运行相比,借助于TensorRT, GCP上的T4 GPU可以将ResNet-50的推理速度提高10倍以上。受益于全球供货和谷歌的高速网络,GCP上的NVIDIA T4能够以高性价比,为那些需要高效运作的全球性服务供应商提供服务。例如,Snap就在使用NVIDIA T4为其全球用户群创建更有效的算法的同时,保持了低成本。
借助于Google Cloud上的深度学习VM镜像(Deep Learning VM images),可以在NVIDIA T4 GPU上快速启动和运行机器学习模型的训练和服务推理工作负载。这些应用包括了您需要的所有软件:驱动程序,CUDA-X AI库,以及主流AI框架,如TensorFlow和PyTorch。此外,Google Cloud会为您进行软件更新,使您不必再为了兼容性和性能优化的问题额外费心。您只需创建一个新的Compute Engine实例,选择您的镜像,单击Start,几分钟后,您就可以访问和启用您的由T4赋能的实例。您也可以在Google Cloud的AI平台上启动您的实例,这是一个端到端的开发环境,可帮助机器学习开发人员和数据科学家在任何地方构建、共享和运行机器学习应用程序。一旦准备就绪,只需几行代码,您就可以借助于Tensor核心的自动混合精度实现加速。
NVIDIA T4 GPU还能为HPC批量计算和渲染工作负载带来卓越的性能和效率,将大规模部署的效用价值最大化。
T4 GPU也是运行虚拟工作站的绝佳选择,能够为工程师和专业创意人员提供支持。借助于GCP Marketplace中的NVIDIA Quadro虚拟工作站,用户可以运行基于NVIDIA RTX平台的应用程序,能在任何地方体验新一代计算机图形技术,包括实时光线追踪和AI增强型图形,以及视频和图像处理。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。