当前,人工智能蓬勃发展,但由于人工智能涉及诸多前沿技术及应用领域,导致实施人工智能的成本较大,高技术门槛为行业从业者带来了挑战。作为国内领先的IT信息技术厂商,近年来曙光持续加大在人工智能相关领域的研发投入力度,致力于为客户业务发展提供强大技术支撑。2018年6月份,由曙光自主研发的深度学习一体化应用服务平台SothisAI荣获国际数字商业创新协会2018ECIAwards金奖。
针对目前人工智能市场最突出的计算服务成本、研发技术门槛两个痛点,同时聚焦图像识别、语音识别、自然语言处理、智能驾驶、科研教育等应用方向,曙光正式对外发布SothisAI2.0版本,进一步为用户优化容器化的集群调度以及深度学习私有云服务方案,通过SothisAI2.0为用户提供卓越的解决方案,以帮助用户将更多的精力集中到垂直应用的工作领域。
据介绍,SothisAI2.0具有高效稳定、弹性灵活、专注人工智能等特性,为用户提供更为快速高效的深度学习切入方式,并开放二次开发接口,可供用户根据自身需求定制特化应用服务。
SothisAI2.0采用Slurm、K8S双调度引擎调度融合容器弹性扩展技术的方式,实现了资源的动态高效调度,应用的快速分发,和进程级隔离。支持多种编译环境,如CUDA、anaconda等,及常见深度学习框架,如Caffe、TensorFlow、PyTorch等。提供了丰富的数据集和典型网络模型,同时支持内容分享和应用发布功能,协助构建平台微生态。
基于容器技术,应用容器化,应用迁移方便快捷,分布式集群最大化提高资源使用率,应用集群化,让应用更强大、可扩展、支持高并发,资源动态弹性扩展,实现可视化管理和操控。容器镜像仓库支持公有仓库、私有仓库,方便镜像管理、迁移扩展。提供调度、编排、服务发现,同时还支持节点监控、应用健康检查、弹性扩容等功能。
提供应用发布订阅、数据代码分享等功能,协助平台用户提高组间协作效率,分享研发成果,精调模型参数。对于自定义环境或框架还可采用自由容器的方式进行环境构建,并通过镜像的固化和分享实现自助发布。
曙光SothisAI目前支持深度学习领域主流的Caffe和TensorFlow等框架,实现从系统到数学库再到上层框架的多层深度学习开发环境一键部署。并有图形化的Web界面和命令行形式的SSH、Jupyter接入方式供用户选择。
面向不同应用行业提供丰富的典型数据集支持,如ImageNet、MNIST、MTVL等。同时支持用户数据集共享功能,实现平台数据集仓库的用户动态实时更新。
SothisAI2.0完整覆盖深度学习训练和容器管理全流程,提供推理服务环境,为用户提供流畅的应用开发体验和一站式深度学习服务,帮助用户加速算法优化,实现产品的快速迭代和最终落地。
目前,SothisAI平台已在多所高校、研究中心以及超算中心部署使用。未来曙光将继续围绕领先技术,对产品及服务进行持续迭代,释放人工智能所需计算力,满足更加复杂、个性化业务发展需求,推动人工智能行业发展。
好文章,需要你的鼓励
一加正式推出AI功能Plus Mind和Mind Space,将率先在一加13和13R上线。Plus Mind可保存、建议、存储和搜索屏幕内容,并将信息整理到Mind Space应用中。该功能可通过专用按键或手势激活,能自动创建日历条目并提供AI搜索功能。一加还计划推出三阶段AI战略,包括集成大语言模型和个人助手功能,同时将推出AI语音转录、通话助手和照片优化等工具。
北航团队推出Easy Dataset框架,通过直观的图形界面和角色驱动的生成方法,让普通用户能够轻松将各种格式文档转换为高质量的AI训练数据。该工具集成了智能文档解析、混合分块策略和个性化问答生成功能,在金融领域实验中显著提升了AI模型的专业表现,同时保持通用能力。项目已开源并获得超过9000颗GitHub星标。
预计到2035年,数据中心用电需求将增长一倍以上,达到440TWh,相当于整个加利福尼亚州的用电量。AI工作负载预计将占2030年数据中心需求的50-70%。传统冷却系统电机存在功率浪费问题,通常在30-50%负载下运行时效率急剧下降。采用高效率曲线平坦的适配电机可显著降低冷却系统功耗,某大型数据中心通过优化电机配置减少了近4MW冷却功耗,为13500台AI服务器腾出空间,年增收入900万美元。
卢森堡计算机事件响应中心开发的VLAI系统,基于RoBERTa模型,能够通过阅读漏洞描述自动判断危险等级。该系统在60万个真实漏洞数据上训练,准确率达82.8%,已集成到实际安全服务中。研究采用开源方式,为网络安全专家提供快速漏洞风险评估工具,有效解决了官方评分发布前的安全决策难题。