从初创公司到行业巨头均开始采用AI ,为医疗行业带来变革
AI有着改变医疗行业的潜力。而这种潜力在发展快速的中国尤为显著,因为中国是全球老龄化人口最多的国家之一。
中国的医疗行业致力于解决国内老龄化人口需求,在此过程中,技术发挥着核心作用,特别是对于医学成像和电子数据记录分析。
为此,中国政府在智能医疗领域展开了行动,鼓励数百家AI医疗初创公司和行业巨头借助AI为这一行业的未来发展奠定坚实基础。
要想感受中国面临的挑战有多大,不妨看看中国保险业巨头平安集团,其拥有近1.8亿个人用户。为深入洞察欺诈检测等问题或预测人群疾病,平安科技数据科学团队除了自身独特的机器学习算法,也用到了scikit-learn常用机器学习库,以及以下两种机器学习算法:主成分分析(PCA)和具有噪声应用的基于密度的空间聚类(DBSCAN)。
平安科技最近对RAPIDS进行了试用,这是一个GPU加速的新开源平台,适用于大规模的数据分析和机器学习,让数据科学家首次能够在GPU上运行数据科学管线,并大幅缩短数据集处理时间。
平安科技使用RAPIDS以及GPU加速的PCA和DBSCAN之后,工作流程执行速度加快了80倍,从几天缩短到几小时(包括数据加载和训练时间)。这有助于该公司主动做出预测并完善预防计划。
中国最大的基因公司华大基因(BGI)同样拥有海量数据-超过1PB的数据存放在该公司称为知识库的数据库中。华大基因(BGI)使用一种名叫XGBoost的机器学习算法,对用于癌症患者个性化免疫治疗的靶向多肽进行分类。
华大基因(BGI)团队在NVIDIA DGX-1 AI超级计算机上运行RAPIDS平台,将分析速度提高了17倍,并将多肽的分析范围扩大至数百万种。
在这方面领先的还有一家公司,它就是专注于数字化健康业务的碳云智能(iCarbonX)。该公司使用越来越常见的数字化生理、基因组、代谢组以及宏基因组数据来研究微生物组。碳云智能运用机器学习将微生物组特征和2型糖尿病关联起来,能提供个性化的消费者医疗服务(如饮食建议或治疗方案的制定),通过在TencentCloud P40服务器上部署RAPIDS,该公司的数据分析速度立即加快了6倍。
在互联网上图像和视频量激增的同时,医学成像也成为医疗行业中最早受益于AI的领域。不过,虽然目前有70%的医学成像研究是基于深度学习,但只有少数算法能成功应用到临床阶段。
个中原因是,医学成像AI往往对多项因素都很敏感,例如患者的人口统计特征、成像仪器的使用年限及其在获取图像时的具体设置等。此类变量可能会影响到AI的准确性。
因此,需要在本地开发AI应用程序,而这正是两家领先的中国医学成像公司采取的做法。
联影智能(UnitedImagingIntelligence)是中国顶尖的人工智能医学影像公司之一,它在NVIDIA DGX系统的基础上构建AI架构,以便开发用于全栈式医学影像的人工智能软件uAI。该公司目标是,从影像获取,疾病筛查,治疗方案等全系列医学影像工作流程中开发出优秀的人工智能软件和产品。
同样地,推想科技(Infervision)成立于2015年,仅4年时间已成长为中国人工智能医学影像第一梯队企业,并在国内外合作遍布亚洲、欧洲以及北美洲的众多医院。推想采用NVIDIA Clara平台,旨在提升产品性能,驱动新一代AI成像集群。该公司的InferRead系列解决方案将GPU部署进AI系统,并已应用于全球数百家顶级医院辅助诊断环境。
中国和其他国家/地区都在大力拥抱创新,藉此构建AI医疗行业,让所有国民都能受益其中。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。