今天采用计算资源的大户是云,明天可能是边缘。
越来越多的数据开始在边缘侧进行分析、处理和储存已是不争的事实。IDC的统计数据显示,到2020年将有超过500亿的终端与设备联入网络,这意味着集中式的数据存储、处理模式将面临巨大压力。边缘计算通过在数据的源头提供服务,将是数字化转型、物联网的下一波浪潮。
日前,新华三在北京举行服务器新品发布会,其围绕五大场景发布了十款服务器,智能边缘被当作十分重要的场景之一。
按照新华三集团首席技术官尤学军的话说,“从云到边缘是新华三构建产品架构的重要组成部分,同时构建边云架构也是新华三的战略,边缘计算服务器则是新华三布局智能边缘必不可少的一部分。”
新华三集团首席技术官尤学军
在智能边缘场景中,新华三为中国市场带来了业界首款边缘计算节点HPE EL1000和EL4000两款产品。
边缘服务器的样子
为什么边缘计算服务器被单独拿出来?这就不得不说它的独特性。通常来说,采用标准通用硬件设备对机房可用空间、电源供应、承重等基础设施有着特殊的要求。拿电信运营商举例,无论是现有综合接入机房还是边缘DC标准通用硬件设备都难以满足需求,且它们数量庞大、位置分散、改造难度大。因此,业界不得不在现有基础设施条件上探索,推出适合边缘的计算平台。
事实上,除了电信运营商,包括亚马逊、谷歌、Facebook、阿里巴巴等互联网和云巨头都在推进自己的网络边缘,去年当亚马逊对全食超市收购时,也被认为其对边缘计算布局的重要一步。然而,无论是运营商还是OTT,边缘所面临的环境都对计算平台提出了新的要求。
以ODCC发起的面向电信应用的开放IT基础设施项目——OTII来说,它对边缘服务器提出的要求如下:
1.机架空间限制:传输及接入机房机架多为600mm 深,少部分达到800mm,远小于数据中心1200mm 的机架深度,常规通用服务器无法部署;
2.环境温度稳定性:由于边缘机房的制冷系统的稳定性无法有效保证,因此服务器最好具备原电信设备的温度适应能力;
3.机房承重限制:众多边缘机房普遍低于数据中心承重标准,对服务器的部署密度造成影响。
此外,还包括服务器性能需求、异构计算要求,以及运维管理需求等,这要求边缘计算服务器都要有新的样子。
新华三集团工业标准服务器产品部总经理刘宏程
其实,在OTII项目中,新华三也参与了对OTII服务器技术方案的制定和行动计划书,新华三集团工业标准服务器产品部总经理刘宏程表示,新华三同中国移动合作进行了边缘计算的试点和部署。
将前所未有的深度计算、数据捕获、控制和企业管理带到边缘
在新华三服务器新品发布会上,刘宏程强调了新华三带来的首款边缘计算节点HPE EL1000和EL4000两款产品。通过先进的设计理念和制造工艺,两款服务器不仅实现了体积的微型化,更能在适应恶劣工况的条件下提供强大性能、管理及无线连接能力;能够让数据在边缘和生产端被有效汇聚和处理,降低整体网络压力,提升IT效率。
HPE Edgeline将前所未有的深度计算、数据捕获、控制和企业管理带到边缘,在一个机箱中它集成了:基于开放标准的前所未有的深度边缘计算;独有集成精密数据采集与控制;数据中心级的安全、设备和系统管理。
刘宏程指出,HPE Edgeline紧凑型系统专为恶劣环境而设计,它在边缘提供数据中心级功能,能立即洞察物联网数据。这使得企业能够实时决策,增加业务流程价值,从而带来更好的业务成果。与传统服务器相比,其设计可承受更大的冲击、振动,温度范围更广,并且可以适应空间有限的边缘环境。
让数据和计算紧密结合,催生场景创新
“我们有一个理念,数据和计算在未来的结合会越来越紧密。”在刘宏程看来,不管多好的交换系统、多好的网络,它的延迟也会超过数据和计算在一起的延迟,所以边缘计算一定会迎来快速增长。
尤其在物联网爆发的时刻,边缘也正在催生越来越多的场景创新和应用。例如视频监控、AR/VR等高带宽需求业务,以及车联网等低时延需求业务,亦或工业控制等专网,它们借力边缘计算等技术,从而带来更多创新业务在边缘的尝试。实际上,在新华三发力的安防解决方案中,就利用了边缘云的技术,让视频监控和安全变得更智能和高效。
刘宏程强调,场景化让新华三更贴近用户的实际使用需求,降低产品门槛,并让产品在数字化转型过程中发挥更大的作用和价值。
此外,除了边缘计算场景,新华三还围绕混合IT、人工智能、大数据与高性能计算发布了全新的服务器组合,“新华三服务器在坚持高效、敏捷、安全、品质四大独特优势的同时,通过引入AI技术和场景化的研发模式实现了产品的更快更新和更精准定位,从而帮助企业更有效地应对业务变革,并完成数字化转型。”新华三集团副总裁、IT产品部总经理陈振宽说。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。